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1. Introduction

This thesis is devoted to some novel aspects of squeezing in two-level atomic systems, but before

presenting our work in this regard, several preliminaries and basic concepts of the subject are pre-

sented in the introduction to the thesis. We, therefore, organize the introduction in the following

way. In section 1.1 we discuss the coherent states and squeezed states of the electromagnetic

field as these ideas were first concretely developed in the context of the electromagnetic field

in 1960’s and 1980’s respectively. In section 1.2 we introduce the two-level atomic system on

which we have made our study regarding its squeezing aspects. We also show the equivalence of

a two-level atom with a spin-1
2

particle as we describe the physics of a two-level atom with the

help of the mathematics of a spin- 1
2

particle. In section 1.3 we introduce atomic coherent state

and atomic squeezed state and also discuss the motivation and interest of the subject. In section

1.4 we discuss the organization of the following chapters of our thesis.

1.1. Coherent States and Squeezed States of

Electromagnetic Field

Coherent state or minimum uncertainty state as it is known today was first discovered by E.

Schrödinger [1] in the year 1926 in the context of the harmonic oscillator in quantum mechanics.

He recognized that it is possible to obtain a particular superposition of the harmonic oscillator

wavefunctions such that we obtain a Gaussian wave packet, which does not disperse with time

and also exhibits minimum uncertainty in the measurement of position and momentum for the

corresponding quantum particle. For these reasons the resultant state was named as a coherent

state. But though it was introduced as early as 1926, it was widely recognized in 1960’s due

to the work of Glauber, Klauder and Sudarshan who applied these notions to the description of

electromagnetic radiation. The discovery of laser light made the idea of coherent states, one of

the most interesting and important subjects. One aspect of the coherent states is based on the

uncertainty principle and hence we begin our discussion with this principle.

5



6 Introduction

1.1.1. The Uncertainty Principle

Every quantum system shows a fundamental and inherent uncertainty in the simultaneous mea-

surements of it’s canonically conjugate pair of physical variables that describe the behaviour of

the system. This was formulated by W. Heisenberg in 1927 and is known as Heisenberg’s un-

certainty principle [2]. If q and p are the position and it’s canonically conjugate momentum of a

quantum particle respectively, then the uncertainties in the simultaneous measurements of q and

p represented as

∆q =

√

〈q̂2〉 − 〈q̂〉2 (1.1)

and

∆p =

√

〈p̂2〉 − 〈p̂〉2 (1.2)

respectively, satisfy

∆q∆p ≥ ~

2
, (1.3)

where q̂ and p̂ are the Hermitian operators coresponding to q and p respectively and ~ = h
2π

,

where h is Planck’s constant. The average values 〈q̂〉 and 〈p̂〉 in the expressions of uncertainties

in Eqs. (1.1) and (1.2) are calculated over the relevant quantum state of the particle. Here ∆q

and ∆p are measures of quantum noise.

It is to be mentioned here that Schrödinger also presented the uncertainty relation which is

much more general and has the form

∆q∆p ≥ |〈[q̂, p̂]〉/2 + 〈{q̂, p̂}〉/2|, (1.4)

where [q̂, p̂] = q̂p̂− p̂q̂ and {q̂, p̂} = q̂p̂ + p̂q̂ are called the commutator and anticommutator of

q̂ and p̂ respectively. However, we deal with Eq. (1.3) at present.

Our thesis deals with the squeezing of quantum noise in atomic states, however, we discuss

some of the preliminaries in the context of electromagnetic field as the ideas pertinent to the

present subject of study originated from there. The concept of coherent states and squeezed

states for electromagnetic field is based on it’s quantum theory and therefore, it is essential to

discuss some basic ideas of this theory. We deal with atom-field interaction in a cavity and from

that point of view also the idea of the quantized version of the electromagnetic field is necessary.

1.1.2. Quantization of the Electromagnetic Field in a Cavity

We start with a brief introduction to the quantum mechanics of a simple harmonic oscillator as

it is required for our discussion on the quantum theory of electromagnetic field.

The Hamiltonian operator for a simple harmonic oscillator of unit mass and angular frequency

ω is given as

Ĥ =
1

2
p̂2 +

1

2
ω2q̂2, (1.5)
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where q̂ and p̂ are the position and it’s canonically conjugate momentum operators respectively,

which satisfy

[q̂, p̂] = i~. (1.6)

We define two non-Hermitian operators â and â† as

â =
ωq̂ + ip̂√

2~ω
(1.7)

and

â† =
ωq̂ − ip̂√

2~ω
, (1.8)

such that they satisfy

[â, â†] = 1 (1.9)

and the Hamiltonian operator acquires the form

Ĥ = ~ω(â†â+
1

2
). (1.10)

If |n〉 is the eigenvector of â†â with eigenvalue n i.e.

â†â|n〉 = n|n〉 (1.11)

then,

â|n〉 =
√
n|n− 1〉, (1.12)

â†|n〉 =
√
n + 1|n+ 1〉. (1.13)

The operators â and â† are called the annihilation and creation operators respectively for the

harmonic oscillator states.

An electromagnetic radiation field can be shown to be equivalent to a infinite set of these

harmonic oscillators. We now introduce the theory of quantization of the electromagnetic field.

Quantization of the electromagnetic field has been dealt in many text books, but, there it has

been done for an unbounded region using vector potential. What we need for the present purpose

is the quantized version of the electromagnetic field in a cavity. We do not treat the problem

using vector potential and discuss the theory using quantization of electric and magnetic fields

directly because this gives the quantized version appropriate for typical problems in quantum

optics, in general. We start with the equations of classical electrodynamics also called Maxwell’s

equations [3]. In a source-free space these equations in terms of the electric and magnetic fields

E and B respectively, are

∇ · E = 0, (1.14)

∇ ·B = 0, (1.15)
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∇× B = µ0ǫ0
∂E

∂t
, (1.16)

and

∇× E = −∂B
∂t
. (1.17)

The constants µ0 and ǫ0 are the permeability and permitivity of free space respectively. The

coupled equations can be decoupled to yield the wave equation

∇2E − 1

c2
∂2E

∂t2
= 0 (1.18)

governing the electric field only and

∇2B − 1

c2
∂2B

∂t2
= 0 (1.19)

for the magnetic field. Here we have assumed

c2 =
1

µ0ǫ0
. (1.20)

In the interaction between electromagnetic field and atom or molecule, both the electric and

the magnetic components interact with the underlying charges and currents. These interactions

are known as dipole or, in general, multipole interactions. The electric dipole interaction is 1016

times stronger than the corresponding magnetic component counterpart. For this reason the

electric field is also known as the optical field and we discuss it’s quantization theory [4].

We assume that the electromagnetic radiation field is contained in a source free cavity of

volume V . The axis of the cavity is along the z-direction and the length of the cavity along it’s

axis is L. The electric field is considered to be linearly polarized along x-direction and has the

spatial dependence appropriate to the cavity. We show that a single cavity mode of the radiation

field is equivalent to a simple harmonic oscillator of unit mass and angular frequency equal to

the cavity eigenfrequency and for that we expand the electric field in the normal modes Ul(z, t)

of the cavity [18] as

Ex(z, t) =
∑

l

AlUl(z, t) (1.21)

where

Ul(z, t) = ql(t) sin(klz). (1.22)

ql is the normal mode amplitude and kl = lπ
L

, with l = 1, 2, 3....

The Al’s are given by

Al =

[

2ω2
l

V ǫ0

]1/2

(1.23)
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where ωl is the eigenfrequency of the mode l. The nonvanishing component of the magnetic field

By can be obtained from Eqs. (1.15), (1.16) and (1.40) as

By(z, t) = µ0ǫ0
∑

l

Al
q̇l
kl

cos(klz). (1.24)

The classical Hamiltonian for the field

H =
1

2

∫

V

dτ(ǫ0E
2
x +

1

µ0
B2

y) (1.25)

takes the form, in terms of ql and q̇l = pl as,

H =
1

2

∑

l

(ω2
l q

2
l + p2

l ). (1.26)

We observe that the above Hamiltonian is as if the sum of several simple harmonic oscillator

Hamiltonians of unit mass and angular frequency ωl corresponding to each value of l. This shows

that each cavity mode of the electromagnetic field is equivalent to a simple harmonic oscillator.

The dynamics is quantized by identifying ql as operator q̂l and pl as operator p̂l obeying

[q̂l, p̂s] = i~δls (1.27)

and

[q̂l, q̂s] = [p̂l, p̂s] = 0. (1.28)

We define two non-Hermitian operators

âl =
1√
2~ωl

(

ωlq̂l + ip̂l

)

(1.29)

and

â†l =
1√
2~ωl

(

ωlq̂l − ip̂l

)

(1.30)

respectively, by which H takes the form

Ĥ = ~

∑

l

ωl(â
†
l âl + 1/2). (1.31)

From Eqs. (1.27) − (1.30), it follows that âl and â†s obey the commutation relation

[âl, â
†
s] = δls. (1.32)

If |nl〉 is the eigenvector of â†l âl with eigenvalue nl that is,

â†l âl|nl〉 = nl|nl〉 (1.33)
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then

âl|nl〉 =
√
nl|nl − 1〉, (1.34)

and

â†l |nl〉 =
√
nl + 1|nl + 1〉. (1.35)

The state |nl〉 is called the photon number state that is, it infers the number of photons in

the mode l which is nl and due to Eqs. (1.34) and (1.35) the operators âl and â†l are called

the photon annihilation and creation operators respectively. Eq. (1.33) implies that the operator

â†l âl determines the number of photons in the state |nl〉 and hence, is called the photon number

operator.

The state |nl〉 is also an eigenstate of the harmonic oscillator Hamiltonian Ĥl = ~ωl(â
†
l âl+1/2)

with eigenvalue ~ωl(nl + 1/2) as

Ĥl|nl〉 = ~ωl(â
†
l âl + 1/2) |nl〉 = ~ωl(nl + 1/2) |nl〉. (1.36)

The above derivation establishes the fact that a cavity mode of radiation field is indeed equiva-

lent to a harmonic oscillator. The electric field operator Êxl(z, t) corresponding to the l-th cavity

mode of the radiation field has the form

Êxl(z, t) = Alq̂l(t) sin(klz). (1.37)

Using the expression of Al given in Eq. (1.23) the above equation can be written in terms of âl

and â†l as

Êxl(z, t) =
1

2
El(âl + â†l ) sin(klz) (1.38)

where El = 2

[

~ωl

V ǫ0

]1/2

has the dimension of electric field. We immediately see that 〈nl|Êxl|nl〉 =

0, but,

〈nl|Ê2
xl(z)|nl〉 =

1

2
E2

l

(

nl +
1

2

)

sin2 kiz (1.39)

for the cavity mode l in a state |nl〉 containing exactly nl photons. This does not go against

quantum mechanics since it is not 〈Ê〉 but the intensity of the radiation field I ∝ 〈Ê2〉, which is

observed. However, such is not the case for all states of the radiation field. One such example,

as we shall see, is the field in a coherent state in which 〈Ê〉 6= 0. With this information we now

describe what is known as a coherent state of electromagnetic field.

1.1.3. Coherent State of Electromagnetic Field

In the remainder of this chapter we restrict ourselves to a single mode of the radiation field with

angular frequency ω having annihilation and creation operators â and â† respectively. The electric
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field operator corresponding to the single cavity mode of the radiation field is written by replacing

the superscript l from Eq. (1.37) as

Êx(z, t) = Aq̂(t) sin(kz). (1.40)

The coherent state of the electromagnetic radiation field [5–8], is defined as an eigenstate of

the annihilation operator â. Denoting it by |α〉 we have,

â|α〉 = α|α〉. (1.41)

Since â is non-Hermitian, α is, in general complex. We can have a commutation relation among

â and eαâ†
as

[â, eαâ†

] = αeαâ†

. (1.42)

If |n〉 is the eigenstate of the Hamiltonian operator Ĥ = ~ω(â†â+ 1
2
), then the vacuum state

is denoted as

|n = 0〉 = |0〉. (1.43)

Operating both sides of the operator equation (1.42) on the vacuum state we obtain

âeαâ† |0〉 − eαâ†

â|0〉 = αeαâ† |0〉.

This gives

â eαâ† |0〉 = α eαâ† |0〉. (1.44)

We find that eαâ† |0〉 is an eigenvector of â and, thus, proportional to |α〉. With proper

normalization we may write

|α〉 = e−
1

2
|α|2eαâ† |0〉. (1.45)

In terms of the photon number state, we may write

|α〉 = e−
|α|2

2

∞
∑

n=0

αn

√
n!
|n〉. (1.46)

If we have two such states |α1〉 and |α2〉 with α1 6= α2 then,

〈α1|α2〉 = e−
1

2

(

|α1|2+|α2|2
) ∞
∑

n1=0

∞
∑

n2=0

α⋆
1
n1αn2

2√
n1!n2!

〈n1|n2〉

= e−
1

2

(

|α1|2+|α2|2
) ∞
∑

n1=0

α⋆
1
n1αn1

2

n1!

= e−
1

2

(

|α1|2+|α2|2−α1
⋆α2

)

. (1.47)
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Thus, the states |α1〉 and |α2〉 are not mutually orthogonal and nor do they have to be as they

are eigenstates of a non-Hermitian operator. Now,

|〈α1|α2〉|2 = e−|α1−α2|2. (1.48)

Therefore, the states |α1〉 and |α2〉 become approximately orthogonal when |α1−α2|2 increases.

The set of states {|α〉} form a complete set. Using Eq. (1.46) we have

∫

|α〉〈α|d2α =

∞
∑

n1=0

∞
∑

n2=0

|n1〉〈n2|√
n1!n2!

∫

αn1α⋆n2e−|α|2d2α. (1.49)

This integral is over the entire complex plane of α. We evaluate it using polar coordinates

(0 < r ≤ ∞, 0 ≤ θ ≤ 2π). We assume

α = r eiθ = x+ iy. (1.50)

Therefore,

d2α = dx dy = r dr dθ. (1.51)

With this change in coordinates Eq. (1.49) becomes,

∫

|α〉〈α|d2α =
∞
∑

n=0

∞
∑

m=0

|n〉〈m|√
n!m!

∫ ∞

r=0

∫ 2π

θ=0

ei(n−m)θrn+m+1e−r2

drdθ. (1.52)

Now,
∫ 2π

0

ei(n−m)θdθ = 2πδmn. (1.53)

Therefore, Eq. (1.52) becomes,

∫

|α〉〈α|d2α = 2π
∞
∑

n=0

|n〉〈n|
n!

∫ ∞

r=0

e−r2

r2n+1dr. (1.54)

We now use the substitution

r2 = s (1.55)

in Eq. (1.54) and obtain

∫

|α〉〈α|d2α = π
∞
∑

n=0

|n〉〈n|
n!

∫ ∞

s=0

sn e−s ds

= π

∞
∑

n=0

|n〉〈n|
n!

Γ(n+ 1)

= π

∞
∑

n=0

|n〉〈n|

= π, (1.56)
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where Γ(n) = (n− 1)! is the Gamma function. Thus,

∫

|α〉〈α|d
2α

π
= 1 (1.57)

and hence, the coherent states {|α〉} form a complete set of states.

The variances of q and p over the state |α〉 satisfy the minimum uncertainty condition of Eq.

(1.3). We now show the calculation of these variances ∆q and ∆p over the state |α〉. Using Eq.

(1.29) and (1.30) we have with ω = 1,

q̂ =

√

~

2
(â† + â) (1.58)

and

p̂ = i

√

~

2
(â† − â). (1.59)

As |α〉 is an eigenstate of â, we have therefore,

〈α|q̂|α〉 =

√

~

2
〈α|(â† + â)|α〉

=

√

~

2

(

α⋆ + α
)

(1.60)

and

〈α|p̂|α〉 = i

√

~

2
〈α|(â† − â)|α〉

= i

√

~

2

(

α⋆ − α
)

. (1.61)

It can be noted from Eqs. (1.40) and (1.60) that 〈α|Êx|α〉 6= 0. From Eqs. (1.58) and (1.59)

we have

q̂2 =
~

2

(

â†2 + â2 + 2â†â+ 1
)

(1.62)

and

p̂2 = −~

2

(

â†2 + â2 − 2â†â− 1
)

(1.63)

respectively. So,

〈α|q̂2|α〉 =
~

2
〈α|(â†2 + â2 + 2â†â+ 1)|α〉

=
~

2

(

α⋆2 + α2 + 2α⋆α + 1
)

=
~

2

(

α⋆ + α
)2

+
~

2
. (1.64)
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Similarly,

〈α|p̂2|α〉 = −~

2
〈α|(â†2 + â2 − 2â†â− 1)|α〉

= −~

2

(

α⋆2 + α2 − 2α⋆α− 1
)

= −~

2

(

α⋆ − α
)2

+
~

2
. (1.65)

Now from Eqs. (1.60) and (1.64) we have

∆q2 = 〈q̂2〉 − 〈q̂〉2 =
~

2
(1.66)

and from Eq. (1.61) and (1.65) we have

∆p2 = 〈p̂2〉 − 〈p̂〉2 =
~

2
. (1.67)

Hence, the uncertainty relation for these variances is

∆q ∆p =
~

2
. (1.68)

Thus, the state |α〉 possesses the minimum value of the inherent uncertainty as given in Eq. (1.3).

In addition, the uncertainties are equally distributed in q and p. Hence they are called minimum

uncertainty states. The state |α〉 in position representation forms a Gaussian wavepacket which

retains it’s exact shape when it is evolved with respect to time under the action of harmonic

oscillator Hamiltanian. Despite these beautiful properties of the coherent state it was not of

much practical use even though it was introduced as early as in 1926. But after the invention of

LASER, it was found that the coherent state describes very well a laser light.

The state |α〉 can be obtained from the vacuum state |0〉 as

|α〉 = D̂(α)|0〉 = e(αâ†−α⋆â)|0〉, (1.69)

because, using Baker-Hausdorff lemma [Apendix-I] it follows that

e(αâ†−α⋆â)|0〉 = eαâ†

e−α⋆âe−
1

2
[αâ†,−α⋆â]|0〉

= eαâ†

e−α⋆âe
−|α|2

2
[â†,â]|0〉

= e−
|α|2

2 eαâ†

e−α⋆â|0〉
= e−

|α|2

2 eαâ†
[

1 − α⋆â+ (α⋆â)2/2! + ...
]

|0〉

= e−
|α|2

2 eαâ† |0〉 (1.70)

which is nothing but Eq. (1.45). The operator D̂(α) is called the displacement operator. This is

due to the fact that the vacuum state satisfies minimum uncertainty conditions represented by

the Eq. (1.68) and hence, |α〉 is also known as displaced vacuum state. Note here that αâ†−α⋆â

being an anti-Hermitian operator, eαâ†−α⋆â is unitary and thus retains the normalization when

acts on a normalized state.
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1.1.4. Squeezed States

When the above mentioned inherent uncertainty of the system is redistributed, so that the

uncertainty in either q or p is reduced below the values, as given in Eqs. (1.66) and (1.67),

retaining, however, as it must, the product in Eq. (1.68), then we say that squeezing has been

introduced in the system. Mathematically we achieve this in this present system through the

following scaling transformation on q̂ and p̂ as,

q̂ −→ q̂′ = q̂eǫ (1.71)

and

p̂ −→ p̂′ = p̂e−ǫ, (1.72)

where ǫ is a real number. The commutation relation between the transformed operators remain

intact as

[q̂′, p̂′] = i~, (1.73)

but the uncertainties in q and p are modified as

∆q′ = eǫ∆q (1.74)

and

∆p′ = e−ǫ∆p. (1.75)

We see that the uncertainty in p is reduced and that in q is enhanced while retaining the

minimum value of the product in Eq. (1.3). At the level of the annihilation and creation

operators the above transformation entails a Bogoluibov transformation viz.

â −→ b̂ = â cosh ǫ+ â† sinh ǫ (1.76)

which is seen to be implemented by a unitary operator

Ŝ(ǫ) = e
ǫ
2
â2− ǫ⋆

2
â†2

(1.77)

[9]. In other words, we have

â→ b̂ = e[
ǫ
2
(â2−â†2)] â e[−

ǫ
2
(â2−â†2)]. (1.78)

The quantum state of the particle in which the above transformation is achieved is called a

squeezed state. The squeezed states can be obtained by Yuen’s method [10] which he called

as two-photon coherent states. Equivalently, the squeezed states can also be obtained by the

method given by Caves [11]. The corresponding parameters in the two methods are related to

each other. In Caves’ method, first, the vacuum state of the electromagnetic field is squeezed
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by the unitary operator Ŝ(ǫ) in Eq. (1.77), also, called as squeeze operator. ǫ is now called the

squeeze parameter with

ǫ = seiθ, 0 ≤ s ≤ ∞, 0 ≤ θ ≤ 2π. (1.79)

The squeezed vacuum

|0, ǫ〉 = Ŝ(ǫ)|0〉 (1.80)

is then displaced by the displacement operator in Eq. (1.69). Thus the squeezed state can be

represented as

|α, ǫ〉 = D̂(α)Ŝ(ǫ)|0〉. (1.81)

The subject has been widely reviewed in Refs. [12–14]. The term “squeezed state” was

first coined in the experiments on gravitational wave detection [15]. In 1980’s and onwards many

experiments were performed to detect squeezed light and people succeeded in obtaining squeezing

by significant amount [16]. With the advanced quantum optics experiments on squeezed states,

this field became one of the most interesting subjects.

1.2. A Two-Level Atom

In the above, we have analysed the coherent and squeezed properties of electromagnetic field.

Then, a natural question arises as to how these ideas can be implemented in atoms. However,

there is a basic difference between the two quantum systems, that is, atom and electromagnetic

field. Electromagnetic field has equispaced infinite number of energy levels whereas we know that

atomic energy levels are quite different. Thus, one needs a deeper look to define atomic coherent

and squeezed states. Before we do so, we need to define what is widely known as a two-level

atom in quantum optics. When the electromagnetic field interacts with an atom the resonant (

the frequency of the electromagnetic field being equal to the transition frequency between a pair

of atomic levels ) or near resonant interaction dominates over its interaction with other atomic

transitions. So, we concentrate on the resonant pair of levels. The other energy levels are not

important for consideration here as their transition frequencies are far away from the frequency

of the electromagnetic field. Hence, we use the terminology as “two-level” atoms [17, 18].

Let the upper and lower level states of a two-level atom are denoted as |u〉 and |l〉 respectively.

We define two operators Ĵ+ and Ĵ− as

Ĵ+ = |u〉〈l| (1.82)

Ĵ− = |l〉〈u| (1.83)

and

Ĵz =
1

2
[|u〉〈u| − |l〉〈l|] (1.84)
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such that

Ĵ+|l〉 = |u〉, (1.85)

Ĵ−|u〉 = |l〉. (1.86)

Thus, Ĵ+ converts a lower level state to the upper one and is called as raising operator and Ĵ−

does the opposite and is the so called lowering operator. Also

Ĵz|u〉 =
1

2
|u〉 (1.87)

and

Ĵz|l〉 = −1

2
|l〉 (1.88)

implying that Ĵz gives the population difference between the upper and the lower levels with the

zero of the energy being fixed at the middle such that the state |u〉 and |l〉 correspond to the

energy 1
2
~ω and −1

2
~ω respectively. Ĵz is known as inversion operator in quantum optics. We

further define

Ĵx =
Ĵ+ + Ĵ−

2
(1.89)

and

Ĵy =
Ĵ+ − Ĵ−

2i
(1.90)

such that

[Ĵk, Ĵl] = iǫklmĴm, (1.91)

where the suffixes k, l,m represent any of the three orthogonal components x, y and z [19, 20].

ǫklm is the Levi Civita symbol representing

ǫ123 = ǫ231 = ǫ312 = 1 (1.92)

and

ǫ132 = ǫ213 = ǫ321 = −1 (1.93)

and other ǫijk are zero. The operators Ĵx and Ĵy correspond to the x and y components of the

atomic polarization respectively. Since Ĵx, Ĵy and Ĵz satisfy the same commutation relations as

the Pauli spin operators, those are called pseudo-spin operators since the z-component is not the

z-component of atomic polarization but the population inversion parameter. Thus a system of

N mutually non-interacting two-level atoms with operators

Ĵx =

N
∑

i=1

Ĵxi
, (1.94)
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Ĵy =

N
∑

i=1

Ĵyi
(1.95)

and

Ĵz =

N
∑

i=1

Ĵzi
(1.96)

is equivalent to a system with total spin N
2

with

−N
2

≤ 〈Jz〉 ≤
N

2
.

The collective atomic operators given in Eqs. (1.94) to (1.96) satisfy the same commutation

relations as given in (1.91). Thus a two-level atom is described mathematicaly with the help of

these pseudo-spin or angular momentum operators. We have studied the atomic coherent states

and atomic squeezed states in terms of these operators which we describe in the next section.

1.3. Atomic Coherent State and Atomic Squeezed State

We now consider various atomic states for which the basis vectors are the angular momentum

eigenstates, also called the Wigner states.

1.3.1. Wigner State

The collective state of a system of N two-level atoms can be represented by a Wigner state

|j,m〉, which is the simultaneous eigenstate of Ĵ2 and Ĵz operators as [~ = 1]

Ĵ2|j,m〉 = j(j + 1)|j,m〉 (1.97)

and

Ĵz|j,m〉 = m|j,m〉, (1.98)

where Ĵ2 is the square of the angular momentum operator. The quantum number j here is

connected to the number of atoms N as j = N
2

and the quantum number m here stands for the

population difference between the two atomic levels. The raising and lowering operators when

act upon |j,m〉 give

Ĵ+|j,m〉 =
√

(j −m)(j +m+ 1) |j,m+ 1〉 (1.99)

Ĵ−|j,m〉 =
√

(j +m)(j −m+ 1) |j,m− 1〉. (1.100)

We know that the variances in Jx and Jy over the state |j,m〉, that is,

∆Jx,y =
√

〈Ĵ2
x,y〉 − 〈Ĵx,y〉2 (1.101)
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are given as

∆Jx = ∆Jy =
1√
2

√

j(j + 1) −m2. (1.102)

It is easy to see that when m takes the value +j or −j the above uncertainties obtain their

minimum values as

∆Jx = ∆Jy =

√

j

2
. (1.103)

Thus, the states |j,m = ±j〉 can be called minimum uncertainty states (MUS).

1.3.2. Atomic ( Spin ) Coherent States

The atomic or spin coherent states were devloped by Bloch [22] and subsequently by Radcliffe

[23], Arecchi and others [24]. This state is traditionally developed via

|j, χ〉 = NeχĴ− |j,m = +j〉 (1.104)

= N

2j
∑

n=0

χn

n!
Ĵn
− |j,m = +j〉, (1.105)

where χ is a complex number. In general the normalization constant N is complex such that,

N = |N | eiφ0 , (1.106)

where φ0 is the phase factor. But, since the overall phase factor in a state vector has no physical

significance, it can be assumed to be zero and hence, we may assume N to be real.

Now,

Ĵn
− |j,m = +j〉 =

√

2j.1 Ĵn−1
− |j,m = j − 1〉

=
√

2j.(2j − 1).1.2 Ĵn−2
− |j,m = j − 2〉

=
√

2j.(2j − 1)...(2j − n+ 1).1.2...n |j,m = j − n〉

=

√

(2j)!n!

(2j − n)!
|j,m = j − n〉. (1.107)

Thus,

|j, χ〉 = N

2j
∑

n=0

χn

√

(2j)!

n!(2j − n)!
|j, j − n〉

= N

2j
∑

n=0

√

2jCn χ
n |j, j − n〉. (1.108)

To find out the normalization constant N we use the condition for normalization as

〈j, χ|j, χ〉 = 1, (1.109)
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which implies

N2

2j
∑

n=0

2jCn

(

|χ|2
)n

= 1 (1.110)

or,

N2
(

1 + |χ|2
)2j

= 1 (1.111)

or,

N =
1

(

1 + |χ|2
)j . (1.112)

Hence the normalized state vector is

|j, χ〉 =
1

(

1 + |χ|2
)j

2j
∑

n=0

√

2jCn χ
n |j,m = j − n〉. (1.113)

To understand the various properties of this state we need to know the average values of various

pseudo-angular momentum operators over this state and hence we now show the calculation of

these necessary quantities.

〈j, χ|Ĵz|j, χ〉 =
1

(

1 + |χ|2
)2j

2j
∑

l,n=0

√

2jCl
2jCn

(

χ⋆
)l

χn 〈j, j − l|Ĵz|j, j − n〉

=
1

(

1 + |χ|2
)2j

2j
∑

n=0

2jCn|χ|2n (j − n)

=
1

(

1 + |χ|2
)2j

[

j

2j
∑

n=0

2jCn |χ|2n − |χ|2 d

d|χ|2
2j
∑

n=0

2jCn |χ|2n

]

=
1

(

1 + |χ|2
)2j

[

j
(

1 + |χ|2
)2j

− |χ|2 d

d|χ|2
(

1 + |χ|2
)2j
]

= j − 2j
|χ|2

1 + |χ|2

= j
1 − |χ|2
1 + |χ|2 . (1.114)
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Similarly,

〈j, χ|Ĵ+|j, χ〉 =
1

(

1 + |χ|2
)2j

2j
∑

l,n=0

√

2jCl
2jCn

(

χ⋆
)l

χn 〈j, j − l|Ĵ+|j, j − n〉

=
1

(

1 + |χ|2
)2j

2j
∑

l,n=0

√

2jCl
2jCn

(

χ⋆
)l

χn
√

n(2j − n+ 1)δl,n−1

=
1

(

1 + |χ|2
)2j

2j
∑

l=0

√

2j! 2j! (l + 1) (2j − l)

l! (2j − l)! (l + 1)! (2j − l − 1)!
χ⋆lχl+1

=
χ

(

1 + |χ|2
)2j

2j
∑

l=0

2j!

l! (2j − l − 1)!
|χ|2l

=
χ

(

1 + |χ|2
)2j

2j
∑

l=0

2jCl (2j − l) |χ|2l

=
χ

(

1 + |χ|2
)2j

[

2j

2j
∑

l=0

2jCl |χ|2l −
2j
∑

l=0

2jCl l |χ|2l

]

=
χ

(

1 + |χ|2
)2j

[

2j
(

1 + |χ|2
)2j

− |χ|2 d

d(|χ|2)

2j
∑

l=0

2jCl l |χ|2l

]

= 2jχ− χ|χ|2
(

1 + |χ|2
)2j

d

d(|χ|2)
(

1 + |χ|2
)2j

= 2jχ− 2jχ
|χ|2

(

1 + |χ|2
)

=
2jχ

(

1 + |χ|2
) . (1.115)

As

〈Ĵ−〉 = 〈Ĵ+〉⋆. (1.116)

Therefore,

〈Ĵ−〉 =
2jχ⋆

(

1 + |χ|2
) . (1.117)

Now,

Ĵx =
1

2

(

Ĵ+ + Ĵ−

)

(1.118)
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and hence,

〈Ĵx〉 =
1

2

(

〈Ĵ+〉 + 〈Ĵ−〉
)

(1.119)

and using Eqs. (1.115) and (1.117) we obtain,

〈Ĵx〉 = j
χ + χ⋆

(

1 + |χ|2
) . (1.120)

Similarly,

Ĵy =
1

2i

(

Ĵ+ − Ĵ−

)

(1.121)

implying,

〈Ĵy〉 =
1

2i

(

〈Ĵ+〉 − 〈Ĵ−〉
)

= j
χ− χ⋆

i
(

1 + |χ|2
) . (1.122)

Using the substitution

χ = tan
θ

2
eiφ , (1.123)

Eqs. (1.114), can be casted in the form

〈Ĵz〉 = j
1 − tan2 θ/2

1 + tan2 θ/2

= j cos θ . (1.124)

Similarly, Eqs. (1.120) and (1.122) can be written as using Eq. (1.123) as

〈j, χ|Ĵx|j, χ〉 = j sin θ cosφ (1.125)

and

〈j, χ|Ĵy|j, χ〉 = j sin θ sinφ (1.126)

respectively. We see that the angles θ and φ are as if the polar and azimuthal angles respectively,

made by the mean angular momentum vector

〈Ĵ〉 = 〈Ĵx〉i + 〈Ĵy〉j + 〈Ĵz〉k (1.127)

with a right handed rectangular cartesian coordinate axes. Here i, j and k are the unit vectors

along the x, y and z axes respectively. The magnitude of 〈Ĵ〉 is

|〈Ĵ〉| =

√

〈Ĵx〉
2
+ 〈Ĵy〉

2
+ 〈Ĵz〉

2

=

√

j2 sin2 θ cos2 φ+ j2 sin2 θ sin2 φ+ j2 cos2 θ

= j. (1.128)
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To calculate the variances

∆Jx =

√

〈Ĵ2
x〉 − 〈Ĵx〉

2
(1.129)

and

∆Jy =

√

〈Ĵ2
y 〉 − 〈Ĵy〉

2
(1.130)

over the state |j, χ〉, we see that we need to calculate 〈Ĵ2
x〉 and 〈Ĵ2

y 〉 over that state. We,

therefore, now show the calculation of these quantities one by one. We know that

Ĵ2
x =

(1

2

)2(

Ĵ+ + Ĵ−

)(

Ĵ+ + Ĵ−

)

=
1

4

(

Ĵ2
+ + Ĵ2

− + Ĵ+Ĵ− + Ĵ−Ĵ+

)

. (1.131)

Now,

Ĵ+Ĵ− + Ĵ−Ĵ+ =
(

Ĵx + iĴy

)(

Ĵx − iĴy

)

+
(

Ĵx − iĴy

)(

Ĵx + iĴy

)

= 2
(

Ĵ2
x + Ĵ2

y

)

= 2
(

Ĵ2 − Ĵ2
z

)

. (1.132)

Therefore, Eq. (1.131) becomes,

Ĵ2
x =

1

4

(

Ĵ2
+ + Ĵ2

−

)

+
1

2

(

Ĵ2 − Ĵ2
z

)

. (1.133)

Therefore,

〈Ĵ2
x〉 =

1

4

(

〈Ĵ2
+〉 + 〈Ĵ2

−〉
)

+
1

2

(

〈Ĵ2〉 − 〈Ĵ2
z 〉
)

=
1

4

(

〈Ĵ2
+〉 + 〈Ĵ2

+〉⋆
)

+
1

2

(

〈Ĵ2〉 − 〈Ĵ2
z 〉
)

=
1

2

(

Re〈Ĵ2
+〉 + 〈Ĵ2〉 − 〈Ĵ2

z 〉
)

. (1.134)

Thus, to calculate 〈j, χ|Ĵ2
x |j, χ〉 we need to calculate 〈j, χ|Ĵ2

+|j, χ〉, 〈j, χ|Ĵ2|j, χ〉 and 〈j, χ|Ĵ2
z |j, χ〉.
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Now,

〈j, χ|Ĵ2
+|j, χ〉 =

1
(

1 + |χ|2
)2j

2j
∑

l,n=0

√

2jCl
2jCn

(

χ⋆
)l

χn 〈j, j − l|Ĵ2
+|j, j − n〉

=
1

(

1 + |χ|2
)2j

2j
∑

l,n=0

√

2jCl
2jCn

(

χ⋆
)l

χn

×
√

n(n− 1)(2j − n+ 1)(2j − n + 2) δl,n−2

=
1

(

1 + |χ|2
)2j

2j
∑

l=0

√

2j! 2j! (l + 2)(l + 1) (2j − l)(2j − l − 1)

l! (2j − l)! (l + 2)! (2j − l − 2)!
χ⋆lχl+2

=
1

(

1 + |χ|2
)2j

2j
∑

l=0

2jCl |χ|2lχ2 (2j − l)(2j − l − 1)

=
χ2

(

1 + |χ|2
)2j

[

(4j2 − 2j)

2j
∑

l=0

2jCl |χ|2l − (4j − 1)

2j
∑

l=0

2jCl l |χ|2l

+

2j
∑

l=0

2jCl |χ|2ll2

]

=
χ2

(

1 + |χ|2
)2j

[

(4j2 − 2j)
(

1 + |χ|2
)2j

− (4j − 1)|χ|2 d

d(|χ|2)

2j
∑

l=0

2jCl |χ|2l

+ |χ|2 d

d(|χ|2) |χ|
2 d

d(|χ|2)

2j
∑

l=0

2jCl |χ|2l

]

= (4j2 − 2j)χ2 − (4j − 1)
χ2|χ|2

(

1 + |χ|2
)2j

d

d(|χ|2)
(

1 + |χ|2
)2j

+
χ2|χ|2

(

1 + |χ|2
)2j

d

d(|χ|2) |χ|
2 d

d(|χ|2)
(

1 + |χ|2
)2j

= (4j2 − 2j)χ2 − 2j(4j − 1)
χ2|χ|2

(

1 + |χ|2
) + 2j

χ2|χ|2
(

1 + |χ|2
)

+ 2j(2j − 1)
χ2|χ|4

(

1 + |χ|2
)2

= 2j(2j − 1)
χ2

(

1 + |χ|2
)2 . (1.135)
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Using Eq. (1.123) we obtain

〈j, χ|Ĵ2
+|j, χ〉 =

1

2
j(2j − 1) sin2 θ e2iφ. (1.136)

In a similar way

〈j, χ|Ĵ2
z |j, χ〉 =

1
(

1 + |χ|2
)2j

2j
∑

l,n=0

√

2jCl
2jCn

(

χ⋆
)l

χn 〈j, j − l|Ĵ2
z |j, j − n〉

=
1

(

1 + |χ|2
)2j

2j
∑

n=0

2jCn|χ|2n (j − n)2

=
1

(

1 + |χ|2
)2j

[

j2

2j
∑

n=0

2jCn |χ|2n − 2j|χ|2 d

d|χ|2
2j
∑

n=0

2jCn |χ|2n

+ |χ|2 d

d|χ|2 |χ|
2 d

d|χ|2
2j
∑

n=0

2jCn |χ|2n

]

=
1

(

1 + |χ|2
)2j

[

j2
(

1 + |χ|2
)2j

− 2j|χ|2 d

d|χ|2
(

1 + |χ|2
)2j

+ |χ|2 d

d|χ|2 |χ|
2 d

d|χ|2
(

1 + |χ|2
)2j

]

= j2 − 4j2 |χ|2
(

1 + |χ|2
) + 2j

|χ|2
(

1 + |χ|2
)

+ 2j(2j − 1)
|χ|4

(

1 + |χ|2
)2 . (1.137)

Using Eq. (1.123) and simplifying we obtain

〈j, χ|Ĵ2
z |j, χ〉 = j2 cos2 θ +

1

2
j sin2 θ. (1.138)

Now,

〈j, χ|Ĵ2|j, χ〉 =
1

(

1 + |χ|2
)2j

2j
∑

l,n=0

√

2jCl
2jCn

(

χ⋆
)l

χn 〈j, j − l|Ĵ2|j, j − n〉

= j(j + 1). (1.139)

Using Eqs. (1.136), (1.138) and (1.139) in Eq. (1.134) we obtain

〈Ĵ2
x〉 =

1

2
j

[

1 + j sin2 θ +
1

2
(2j − 1) sin2 θ cos 2φ− 1

2
sin2 θ

]

. (1.140)
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We know that

Ĵ2
x + Ĵ2

y + Ĵ2
z = Ĵ2. (1.141)

Therefore,

〈Ĵ2
y 〉 = 〈Ĵ2〉 − 〈Ĵ2

x〉 − 〈Ĵ2
z 〉. (1.142)

Hence, using Eqs. (1.138), (1.139) and (1.140) in Eq. (1.142) and simplifying we obtain

〈j, χ|Ĵ2
y |j, χ〉 =

1

2
j + j2 sin2 θ sin2 φ− 1

2
j sin2 θ sin2 φ. (1.143)

Therefore, using Eqs. (1.125) and (1.140) in Eq. (1.129) we obtain

∆J2
x =

1

2
j

[

1 + j sin2 θ +
1

2
(2j − 1) sin2 θ cos 2φ− 1

2
sin2 θ

]

− j2 sin2 θ cos2 φ

=
1

2
j
(

1 − sin2 θ cos2 φ
)

. (1.144)

Similarly, using Eqs. (1.126) and (1.143) in Eq. (1.130) we obtain

∆J2
y =

1

2
j + j2 sin2 θ sin2 φ− 1

2
j sin2 θ sin2 φ− j2 sin2 θ sin2 φ

=
1

2
j
(

1 − sin2 θ sin2 φ
)

. (1.145)

We observe that the variances in Jx and Jy are dependent on choice of the coordinate system

and can take value less than
√

j
2
. Thus the variances given in Eqs. (1.129) and (1.130) do

not represent the actual inherent uncertainty of the system. The fundamental and inherent

uncertainty of the system is uncovered in a plane perpendicular to 〈Ĵ〉. Therefore, we perform a

rotation of the coordinate system such that,

Ĵ ′
x = Ĵx cos θ cosφ+ Ĵy cos θ sinφ− Ĵz sin θ, (1.146)

Ĵ ′
y = −Ĵx sinφ+ Ĵy cosφ, (1.147)

Ĵ ′
z = Ĵx sin θ cosφ+ Ĵy sin θ sinφ+ Ĵz cos θ. (1.148)

Thus,

〈Ĵ ′
x〉 = 〈Ĵx〉 cos θ cosφ+ 〈Ĵy〉 cos θ sinφ− 〈Ĵz〉 sin θ, (1.149)

〈Ĵ ′
y〉 = −〈Ĵx〉 sinφ+ 〈Ĵy〉 cosφ, (1.150)

〈Ĵ ′
z〉 = 〈Ĵx〉 sin θ cosφ+ 〈Ĵy〉 sin θ sin φ+ 〈Ĵz〉 cos θ. (1.151)

Using Eqs. (1.124), (1.125) and (1.126) in Eq. (1.149) we observe that

〈Ĵ ′
x〉 = j sin θ cos θ cos2 φ+ j sin θ cos θ sin2 φ− j cos θ sin θ

= 0. (1.152)
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Similarly using Eqs. (1.125) and (1.126) in Eq. (1.150) we observe that

〈Ĵ ′
y〉 = −j sin θ cosφ sinφ+ j sin θ sin φ cosφ

= 0 (1.153)

and using Eqs. (1.124), (1.125) and (1.126) in Eq. (1.151) we observe that

〈Ĵ ′
z〉 = j sin2 θ cos2 φ+ j sin2 θ sin2 φ+ j cos2 θ

= j. (1.154)

Thus the mean angular momentum vector is now

〈Ĵ′〉 = 〈Ĵ ′
x〉i + 〈Ĵ ′

y〉j + 〈Ĵ ′
z〉k

= j k, (1.155)

which shows that 〈Ĵ′〉 is along the z-axis. It may be noted that the magnitude of the mean

angular momentum vector 〈Ĵ′〉 is

|〈Ĵ′〉| = j = |〈Ĵ ′
z〉| = |〈Ĵ〉|, (1.156)

which is expected as a rotation does not change the length of a vector.

We now calculate the variances

∆J ′
x =

√

〈Ĵ ′2
x 〉 − 〈Ĵ ′

x〉2 (1.157)

and

∆J ′
y =

√

〈Ĵ ′2
y 〉 − 〈Ĵ ′

y〉
2

(1.158)

over the state |j, χ〉.
From Eq. (1.146) and (1.147) we get

Ĵ ′2
x = Ĵ2

x cos2 θ cos2 φ+ Ĵ2
y cos2 θ sin2 φ+ J2

z sin2 θ

+ (ĴxĴy + ĴyĴx) cos2 θ sinφ cosφ− (ĴxĴz + ĴzĴx) sin θ cos θ cosφ

− (ĴyĴz + ĴzĴy) sin θ cos θ sinφ. (1.159)

and

Ĵ ′2
y = Ĵ2

x sin2 φ+ Ĵ2
y cos2 φ− (ĴxĴy + ĴyĴx) sinφ cosφ (1.160)

respectively.

Therefore,

〈Ĵ ′2
x 〉 = 〈Ĵ2

x〉 cos2 θ cos2 φ+ 〈Ĵ2
y 〉 cos2 θ sin2 φ+ 〈Ĵ2

z 〉 sin2 θ

+ 〈ĴxĴy + ĴyĴx〉 cos2 θ sin φ cosφ− 〈ĴxĴz + ĴzĴx〉 sin θ cos θ cosφ

− 〈ĴyĴz + ĴzĴy〉 sin θ cos θ sinφ (1.161)
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and

〈Ĵ ′2
y 〉 = 〈Ĵ2

x〉 sin2 φ+ 〈Ĵ2
y 〉 cos2 φ− 〈ĴxĴy + ĴyĴx〉 sinφ cosφ. (1.162)

respectively.

Thus to calculate 〈Ĵ ′2
x 〉 and 〈Ĵ ′2

y 〉 we need to calculate 〈ĴxĴy + ĴyĴx〉, 〈ĴxĴz + ĴzĴx〉 and

〈ĴyĴz + ĴzĴy〉 over the state |j, χ〉. We now show the calculation of these quantities.

ĴxĴy + ĴyĴx =
1

2

(

Ĵ+ + Ĵ−

) 1

2i

(

Ĵ+ − Ĵ−

)

+
1

2i

(

Ĵ+ − Ĵ−

)1

2

(

Ĵ+ + Ĵ−

)

=
1

2i

(

Ĵ2
+ − Ĵ2

−

)

. (1.163)

Therefore,

〈ĴxĴy + ĴyĴx〉 =
1

2i

(

〈Ĵ2
+〉 − 〈Ĵ2

−〉
)

=
1

2i

(

〈Ĵ2
+〉 − 〈Ĵ2

+〉⋆
)

= Im〈Ĵ2
+〉 (1.164)

that is the imaginary part of 〈Ĵ2
+〉. Using Eq. (1.136) we obtain

〈ĴxĴy + ĴyĴx〉 =
1

2
j(2j − 1) sin2 θ sin 2φ. (1.165)

Now,

ĴxĴz + ĴzĴx =
1

2

(

Ĵ+ + Ĵ−

)

Ĵz + Ĵz
1

2

(

Ĵ+ + Ĵ−

)

=
1

2

(

Ĵ+Ĵz + ĴzĴ+ + Ĵ−Ĵz + ĴzĴ−

)

. (1.166)

Thus,

〈ĴxĴz + ĴzĴx〉 =
1

2

(

〈Ĵ+Ĵz + ĴzĴ+〉 + 〈Ĵ−Ĵz + ĴzĴ−〉
)

=
1

2

(

〈Ĵ+Ĵz + ĴzĴ+〉 + 〈ĴzĴ+ + Ĵ+Ĵz〉⋆
)

= Re〈Ĵ+Ĵz + ĴzĴ+〉, (1.167)

that is the real part of 〈Ĵ+Ĵz + ĴzĴ+〉. Similarly,

ĴyĴz + ĴzĴy =
1

2i

(

Ĵ+ − Ĵ−

)

Ĵz + Ĵz
1

2i

(

Ĵ+ − Ĵ−

)

=
1

2i

(

Ĵ+Ĵz + ĴzĴ+ − Ĵ−Ĵz − ĴzĴ−

)

(1.168)

implying

〈ĴyĴz + ĴzĴy〉 = Im〈Ĵ+Ĵz + ĴzĴ+〉, (1.169)
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that is the imaginary part of 〈Ĵ+Ĵz + ĴzĴ+〉. Therefore, we now show the calculation of 〈Ĵ+Ĵz〉
and 〈ĴzĴ+〉 over the state |j, χ〉.

〈j, χ|Ĵ+Ĵz|j, χ〉 =
1

(

1 + |χ|2
)2j

2j
∑

l,n=0

√

2jCl
2jCn

(

χ⋆
)l

χn 〈j, j − l|Ĵ+Ĵz|j, j − n〉

=
1

(

1 + |χ|2
)2j

2j
∑

l,n=0

√

2jCl
2jCn

(

χ⋆
)l

χn(j − n)

×
√

n(2j − n+ 1)δl,n−1

=
χ

(

1 + |χ|2
)2j

2j
∑

l=0

2jCl(2j − l)(j − l − 1)|χ|2l

=
χ

(

1 + |χ|2
)2j

[

(2j2 − 2j)

2j
∑

l=0

2jCl |χ|2l

− (3j − 1)

2j
∑

l=0

2jCl l |χ|2l +

2j
∑

l=0

2jCl l
2 |χ|2l

]

=
χ

(

1 + |χ|2
)2j

[

(2j2 − 2j)(1 + |χ|2)2j

− (3j − 1)|χ|2 d

d|χ|2
2j
∑

l=0

2jCl |χ|2l + |χ|2 d

d|χ|2 |χ|
2 d

d|χ|2
2j
∑

l=0

2jCl |χ|2l

]

= (2j2 − 2j)χ − (3j − 1)
χ|χ|2

(

1 + |χ|2
)2j

d

d|χ|2
(

1 + |χ|2
)2j

+
χ|χ|2

(

1 + |χ|2
)2j

d

d|χ|2 |χ|
2 d

d|χ|2
(

1 + |χ|2
)2j

= (2j2 − 2j)χ− 2j(3j − 1)
χ|χ|2

(

1 + |χ|2
)

+ 2j
χ|χ|2

(

1 + |χ|2
) + +2j(2j − 1)

χ|χ|4
(1 + |χ|2)2

=
2jχ

(

1 + |χ|2
)2

[

j(1 − |χ|2) − 1

]

. (1.170)

Now,

[Ĵz, Ĵ+] = Ĵ+. (1.171)
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Therefore,

〈ĴzĴ+〉 = 〈Ĵ+〉 + 〈Ĵ+Ĵz〉. (1.172)

Thus using Eqs. (1.115), (1.170) and (1.172) we obtain,

〈j, χ|ĴzĴ+|j, χ〉 =
2jχ

(

1 + |χ|2
)2

[

j(1 − |χ|2) + |χ|2
]

. (1.173)

Therefore, adding Eqs. (1.170) and (1.173) we obtain

〈j, χ|Ĵ+Ĵz + ĴzĴ+|j, χ〉 =
2jχ

(

1 + |χ|2
)2

[

2j + |χ|2 − 2j|χ|2 − 1

]

. (1.174)

Using Eq. (1.123) in the above expression we get

〈j, χ|Ĵ+Ĵz + ĴzĴ+|j, χ〉 = 2j
tan(θ/2)eiφ

(

1 + tan2(θ/2)
)2

[

2j + tan2(θ/2) − 2j tan2(θ/2) − 1

]

=
1

2
j(2j − 1) sin 2θ eiφ. (1.175)

Therefore, from Eqs. (1.167), (1.169) and (1.175) we obtain the correlation terms as

〈j, χ|ĴxĴz + ĴzĴx|j, χ〉 =
1

2
j(2j − 1) sin 2θ cosφ (1.176)

and

〈j, χ|ĴyĴz + ĴzĴy|j, χ〉 =
1

2
j(2j − 1) sin 2θ sin φ. (1.177)

Thus, after calculating all the necessary quantities to calculate 〈Ĵ ′2
x 〉 we now try to obtain its

expression. Using Eqs. (1.138), (1.140), (1.143), (1.165), (1.176) and (1.177) in Eq. (1.161)
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we get

〈Ĵ ′2
x 〉 =

1

2
j

[

1 + j sin2 θ +
1

2
(2j − 1) sin2 θ cos 2φ− 1

2
sin2 θ

]

cos2 θ cos2 φ

+

[

1

2
j + j2 sin2 θ sin2 φ− 1

2
j sin2 θ sin2 φ

]

cos2 θ sin2 φ

+

[

j2 cos2 θ +
1

2
j sin2 θ

]

sin2 θ +
1

2
j(2j − 1) sin2 θ sin 2φ cos2 θ sinφ cosφ

− 1

2
j(2j − 1) sin 2θ cosφ sin θ cos θ cosφ

− 1

2
j(2j − 1) sin 2θ sin φ sin θ cos θ sinφ. (1.178)

After simplifying the above expression we obtain

〈Ĵ ′2
x 〉 =

1

2
j. (1.179)

Similarly using Eqs. (1.140), (1.143) and (1.165) in Eq. (1.162) we obtain

〈Ĵ ′2
y 〉 =

1

2
j

[

1 + j sin2 θ +
1

2
(2j − 1) sin2 θ cos 2φ− 1

2
sin2 θ

]

sin2 φ

+

[

1

2
j + j2 sin2 θ sin2 φ− 1

2
j sin2 θ sin2 φ

]

cos2 φ

− 1

2
j(2j − 1) sin2 θ sin 2φ sinφ cosφ, (1.180)

which after simplification reduces to

〈Ĵ ′2
y 〉 =

1

2
j. (1.181)

Since 〈Ĵ ′
x〉 = 〈Ĵ ′

y〉 = 0 as expressed in Eqs. (1.152) and (1.153), we obtain the variances of

Ĵ ′
x and Ĵ ′

y using Eqs. (1.157), (1.158), (1.179) and (1.181) as

∆J ′
x
2

= ∆J ′
y
2

=
j

2
=

|〈Ĵ〉|
2

. (1.182)

These are the inherent uncertainties of the system which has the same value as given in Eq.

(1.103) and hence, we call the state |j, χ〉 as a rotated minimum uncertainty state (MUS) or a

coherent state. The uncertainty relation for this kind of systems is formulated as

∆Jx
′∆Jy

′ ≥ 1

2
|〈Ĵ′〉| =

1

2
|〈Ĵ ′

z〉|. (1.183)
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It is to be noted here that, it is not necessary to align 〈Ĵ〉 always along the z-axis and it can be

aligned along any direction but then we have to find out the uncertainties in such two mutually

perpendicular components of 〈Ĵ〉 which lie in a plane normal to 〈Ĵ〉. As the angles θ and φ are

varied, the mean angular momentum vector 〈Ĵ〉 traces out a sphere, known as the Bloch sphere.

That is, the tip of the vector always remains on the surface of the sphere as it should since the

norm of the vector does not change with rotations. Hence, the atomic coherent states are also

known as Bloch states [22] and are represented by |θ, φ〉. These are also known as Radcliffe

states [23].

It is possible to obtain an elegant expression for the atomic coherent state using Schwinger rep-

resentation for angular momentum operators [21]. In this representation the angular momentum

operators are constructed by defining two kinds of bosonic annihilation operators âi(i = +,−)

corresponding to two uncoupled harmonic oscillators, such that
[

âi, â
†
j

]

= δij (1.184)

and
[

âi, âj

]

= 0 =
[

â†i , â
†
j

]

. (1.185)

With ~ = 1, the raising and lowering operators J+ and J− take the form

Ĵ+ = â†+â− (1.186)

Ĵ− = â†−â+ (1.187)

and

Ĵz =
1

2

(

â†+â+ − â†−â−

)

. (1.188)

The atomic coherent state |j, χ〉 take the form [details given in Apendix-II]

|j, χ〉 =
1

(1 + |χ|2)j

2j
∑

n=0

√

2jCnχ
n (â†+)

2j−n
(â†−)

n

√

(2j − n)!n!
|0+, 0−〉 (1.189)

where |0+, 0−〉 is the vacuum state for the two types of oscillators.

With the above definition for an atomic (spin) coherent state, we can now give a definition of

atomic (spin) squeezed states.

1.3.3. Atomic ( Spin) Squezed States

The squeezed state for the above system is obtained when the variances ∆Jx′ or ∆Jy′ achieves

the value less than

√

|〈Ĵ〉|
2

i.e. when

∆Jx′ <

√

|〈Ĵ〉|
2

(1.190)
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with

∆Jy′ >

√

|〈Ĵ〉|
2

(1.191)

or vice versa.

A system of atoms goes to a squeezed state when it interacts with a squeezed electromagnetic

field. The field establishes quantum correlation among the individual atoms and squeezes them.

In fact the quantum correlation is the basis of squeezing in atomic system which is produced

via a non linear interaction between the atoms and field. The above idea of spin squeezing was

put forward by Kitagawa and Ueda [25]. Wineland and coworkers [26] has also formulated, but

slightly differently, and called it spectroscopic squeezing. Agarwal and Puri [27] have studied

spectroscopic squeezing in an atomic system interacting with a squeezed radiation field. Since,

then the subject has been actively investigated which led to its experimental verification in atomic

vapours [28, 29] and in Bose-Einstein condensates [32]. An ensemble of atoms in a cavity driven

by a strong coherent field exhibits strong non-linearity in the form of optical bistabitity. The

state of the system (consisting of atoms, cavity field and driving field) at the lower turning point

of the bistable curve, produces squeezing in the atomic (spin) system [33, 34]. Spin squeezing

of the lower two levels of a three-level atomic system has been predicted in systems exhibiting

electromagnetically induced transparency [35]. Berman and coworkers [36] have shown that a

system of mutually noninteracting atoms in a microwave cavity described by the so-called Tavis-

Cummings model are spin squeezed. It has been known that quantum entanglement [38] is at the

root of spin squeezing. The relationship between the two outstanding quantum effect has been

formulated in Refs [39, 40]. Thus, spin squeezing can offer as a physical measure of quantum

entanglement, an abstract quality so far. So, the interest in the study of spin squeezing has been

growing further from the quantum information point of view [41]. The interest has also centred

around finding a spin squeezing operator in the lines of squeezing operator Ŝ(ǫ) for photons

defined in Eq. (1.77).

1.4. Organization of the Following Chapters

In Chapter 2 we present our work on the squeezing aspect of the eigenstate of a pseudo-Hermitian

operator with real eigenvalues. These days there is a growing interest in pseudo-Hermitian

operators as they play vital role in the context of non-unitary quantum mechanics [42]. The

eigenstate, which we studied is also very much significant in the context of quantum optics as

it represents a collection of two-level atoms interacting with the squeezed vacuum state of the

electromagnetic field. We bring out the inherent quantum uncertainty of the system represented

by the above state and analyse its squeezing properties.
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In Chapter 3 we develop two generic squeezing Hamiltonians, viz.,

Ĥ1 ∝ Ĵ2
z (1.192)

and

Ĥ2 ∝ ĴxĴy + ĴyĴx (1.193)

having lowest power of nonlinearity with simple structure and try to present the subject of

squeezing in two-level atomic systems from a general perspective.

In Chapter 4 we study the spin squeezing dynamics produced when one generic Hamiltonian,

that is, Ĥ2, generates time evolution on an atomic coherent state. We first study a bipartite

system as it gives analytical results and then with the knowledge gained from there we proceed

to study the system of more than two atoms numerically.

In Chapter 5 we study the spin squeezing dynamics produced when the other generic Hamil-

tonian, that is, Ĥ1, generates time evolution on an atomic coherent state. We take our system

as N two-level atoms interacting with the single mode of a dispersive cavity having high quality

factor and at thermal equilibrium.

In Chapter 6 we present the conclusion of the thesis and in Chapter 7 we present the scope for

further investigations.
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2. Spin Squeezing of the Eigenstate of a

Pseudo-Hermitian Operator

2.1. Introduction

In quantum mechanics we associate Hermitian operators with the dynamical variables, such that

the physically observable or measurable quantities can be represented by the corresponding real

eigenvalues or the expectation values of the operator over the relevant quantum state of the

system. However, a class of operators are known for a long time [1–6] which though non Hermitian

have real eigenvalues. A lot of effort have been made to find out the condition for the reality of

the eigenvalue spectrum of those operators and introduce them in quantum mechanics in order

to enlarge the scope of the subject [7]. Recently the underlying mathematical structure for the

reality of the eigenvalues of the non-Hermitian operators have been shown by Mostafazadeh in

his two papers [8, 9]. He introduced the notion of pseudo-Hermiticity and signified it’s necessity

for the reality of the eigenvalues of a non-Hermitian operator.

An operator Â is said to be a pseudo-Hermitian operator or more acurately an η-pseudo-

Hermitian operator if

η̂Âη̂−1 = Â†, (2.1)

where η̂ is also an operator which is linear, invertible and Hermitian. The eigenvalues of a

pseudo-Hermitian operator are real or come in complex conjugate pairs. Thus, the property of

pseudo-Hermiticity is not sufficient for the reality of the eigenvalue spectrum of an operator.

We now present the sufficient condition for a η-pseudo-Hermitian operator with a complete

set of discrete biorthonormal eigenvectors to have all the eigenvalues real. The meaning of the

existence of a complete set of discrete biorthonormal eigenvectors of an operator say Â is that,

there exists a set of vectors {|ψn〉, |φn〉}, such that

Â|ψn〉 = En|ψn〉, (2.2)

Â†|φn〉 = E⋆
n|φn〉, (2.3)

〈φm|ψn〉 = δmn (2.4)

39
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and
∑

n

|ψn〉〈φn| = 1. (2.5)

The necessary and sufficient condition for a η-pseudo-Hermitian operator with a complete set

of discrete biorthonormal eigenvectors to have only real eigenvalue spectrum is that it should be

possible to express the operator η̂ as Ô†Ô where Ô is an invertible linear operator [8, 9]. Details

are given in Apendix III.

In this chapter we deal with an eigenstate of such an operator which is of considerable interest in

the study of N two-level atoms interacting with the squeezed vacuum state of the electromagnetic

field [15]. We show that the above mentioned eigenstate is an atomic squeezed state. We

introduce such an operator and the corresponding eigenstate in Section 2.2. In section 2.3

we express that eigenstate by introducing reduced Wigner d-matrix elements as this makes the

relevant calculations simple. In section 2.4 we derive the required average values, correlations and

the variances of the pseudo angular momentum operators to study the squeezing properties of the

above mentioned eigenstate. In section 2.5 we introduce the proper rotation of the system (as

mentioned in section 1.3 of chapter 1) represented by the eigenstate and analyse it’s squeezing

aspect. In section 2.6 we continue our analysis to include the properties that arise due to pseudo-

Hermiticity of the operator that we study. In section 2.7 we discuss the physical significance of

the above mentioned eigenstate and we conclude the chapter in Section 2.8.

2.2. Pseudo-Hermiticity of the Operator Λ̂

In this Section, we introduce the pseudo-Hermitian operator

Λ̂ = Ĵx cosh ξ + iĴy sinh ξ (2.6)

with ξ as a real parameter and construct it’s eigenstates with real eigenvalues [10, 11].

The rotation of the x− y plane about z-axis in the anticlockwise sense by angle θ changes the

x-component of angular momentum operator i.e. Ĵx as

Ĵ ′
x = Ĵx cos θ + Ĵy sin θ = e−iĴzθĴxe

iĴzθ. (2.7)

If we replace θ by iξ then

Ĵ ′
x = Ĵx cos iξ + Ĵy sin iξ

= Ĵx cosh ξ + iĴy sinh ξ

= Λ̂

= eξĴz Ĵxe
−ξĴz . (2.8)
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Thus the operator Λ̂ is nothing but a “hyperbolically” rotated Ĵx viz. rotation through an

imaginary angle iξ about the z-axis. We now show that Λ̂ is a pseudo-Hermitian operator. We

have,

Λ̂† = e−ξĴz Ĵxe
ξĴz

= e−2ξĴzeξĴz Ĵxe
−ξĴze2ξĴz

= e−2ξĴz Λ̂e2ξĴz

= η̂Λ̂η̂−1 (2.9)

with η̂ = e−2ξĴz . Thus Λ̂ is η-pseudo-Hermitian . Moreover, η̂ = e−2ξĴz = e−ξĴze−ξĴz = Ô†Ô

with Ô = e−ξĴz . Therefore η̂ is decomposable as Ô†Ô with Ô as a linear and invertible operator.

Thus the eigenvalues of Λ̂ are real.

We now construct it’s eigenstates and for that we take a ket vector as e−i π
2
Ĵy|j,m〉. When Ĵx

operates on it we have

Ĵxe
−i π

2
Ĵy |j,m〉 = e−i π

2
Ĵyei π

2
Ĵy Ĵxe

−i π
2
Ĵy |j,m〉. (2.10)

Using Campbell-Baker-Hausdorf lemma [see Apendix-I] we obtain

ei π
2
Ĵy Ĵxe

−i π
2
Ĵy = Ĵx +

(

i
π

2

)[

Ĵy, Ĵx

]

+
(

i
π

2

)2 1

2!

[

Ĵy,
[

Ĵy, Ĵx

]]

+ ....

= Ĵx +
π

2
Ĵz −

(π

2

)2 1

2!
Ĵx −

(π

2

)3 1

3!
Ĵz + ....

= Ĵx

[

1 −
(π

2

)2 1

2!
+ ...

]

+ Ĵz

[

π

2
−
(π

2

)3 1

3!
+ ...

]

= Ĵx cos
π

2
+ Ĵz sin

π

2

= Ĵz. (2.11)

Therefore, Eq. (2.10) becomes,

Ĵxe
−i π

2
Ĵy |j,m〉 = e−i π

2
Ĵy Ĵz|j,m〉

= me−i π
2
Ĵy |j,m〉. (2.12)

Thus the ket vector e−i π
2
Ĵy |j,m〉 is an eigenvector of Ĵx with eigenvalue m. We now construct a

state vector |Ψm〉 by operating on e−i π
2
Ĵy |j,m〉 by eξĴz where ξ is a real and positive parameter

and by inserting a normalization constant Am as eξĴz not being unitary does not preserve the

norm. Thus

|Ψm〉 = Ame
ξĴze−i π

2
Ĵy |jm〉. (2.13)
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We show below that |Ψm〉 is the eigenvector of Λ̂ with eigenvalue m. Operating on |Ψm〉 by

Λ̂ we observe that,

Λ̂|Ψm〉 = eξĴz Ĵxe
−ξĴzAme

ξĴze−i π
2
Ĵy |j,m〉

= Ame
ξĴz Ĵxe

−i π
2
Ĵy |j,m〉

= mAme
ξĴze−i π

2
Ĵy |j,m〉

= m|Ψm〉, (2.14)

where we have used Eq. (2.12).

Thus, |Ψm〉 is an eigenvector of Λ̂ with eigenvalue m [15].

The biorthonormal state vector of |Ψm〉 is constructed by operating on e−i π
2
Ĵy |j,m〉 by e−ξĴz

and inserting the constant Nm as

|Φm〉 = Nme
−ξĴze−i π

2
Ĵy |jm〉. (2.15)

Proceeding in the same manner it can be shown that

Λ̂†|Φm〉 = m|Φm〉, (2.16)

implying that |Φm〉 is an eigenvector of Λ̂† with eigenvalue m. We can also check that by chosing

Nm = 1/Am, we have

〈Ψm|Φn〉 = δmn, (2.17)

where δmn is the Kroneker delta symbol. Hence, the states |Ψm〉 and |Φm〉 are biorthonormal.

For completeness of the above state vectors we see that

+j
∑

m=−j

|Ψm〉〈Φm| =

+j
∑

m=−j

Am
1

Am
eξĴze−i π

2
Ĵy |j,m〉〈j,m|ei π

2
Ĵye−ξĴz . (2.18)

As
+j
∑

m=−j

|j,m〉〈j,m| = 1, (2.19)

hence, Eq. (2.18) reduces to
+j
∑

m=−j

|Ψm〉〈Φm| = 1. (2.20)

Thus the set of state vectors {|Ψm〉, |Φm〉} form a discrete set of complete biorthonormal eigen-

vectors. Therefore, Λ̂ satisfies the necessary and sufficient condition for having only real eigenvalue

spectrum and hence, inspite of the fact that it is non-Hermitian, it has only real eigenvalues.

We now proceed to represent the state vector |Ψm〉 by introducing the reduced Wigner d-

matrix elements as this form of |Ψm〉 makes the calculation of moments required to analyse the

squeezing aspect of |Ψm〉 very simple.
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2.3. Representation of the State |Ψm〉 in Terms of Reduced

Wigner d-matrix Elements.

The effect of rotation about y-axis by angle β on the physical system in the state |j,m〉 is given

by the application of the rotation operator R̂y(β) as

|j,m〉 −→ R̂y(β)|j,m〉. (2.21)

Using Eq. (2.19) with the magnetic quantum number as m′ we can write,

R̂y(β)|j,m〉 =

+j
∑

m′=−j

|j,m′〉〈j,m′|R̂y(β)|j,m〉

=

+j
∑

m′=−j

dj
m′m(β)|j,m′〉. (2.22)

The quantity dj
m′m(β) is called the reduced Wigner d-matrix element [12] which is given as (with

~ = 1)

dj
m′m(β) = 〈j,m′|R̂y(β)|j,m〉 = 〈j,m′|e−iβJy |j,m〉

= (−1)m′−m
√

(j +m)!(j −m)!(j +m′)!(j −m′)!

×
∑

k

(−1)k(cos β
2
)2j−2k−m′+m(sin β

2
)2k+m′−m

k!(j −m′ − k)!(j +m− k)!(m′ −m+ k)!
. (2.23)

The properties of Wigner d-matrix elements are discussed in Apendix IV.

Now we represent the state |Ψm〉 using the reduced Wigner d-matrix elements.

|Ψm〉 = Ame
ξĴze−i π

2
Ĵy |j,m〉

= Ame
ξĴz

+j
∑

m′=−j

|j,m′〉〈j,m′|e−i π
2
Ĵy |j,m〉

= Ame
ξĴz

+j
∑

m′=−j

dj
m′m(

π

2
)|j,m′〉

= Am

+j
∑

m′=−j

dj
m′m(

π

2
)eξm′ |j,m′〉. (2.24)
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The normalization constant Am is obtained by using the normalization condition 〈Ψm|Ψm〉 = 1

as

|Am|2
+j
∑

m′=−j

+j
∑

m′′=−j

eξ(m′+m′′

)dj
m′m(

π

2
)dj

m′′m(
π

2
)〈j,m′′|j,m′〉 = 1

or,

|Am|2
+j
∑

m′=−j

e2ξm′

dj
m′m(

π

2
)dj

m′m(
π

2
) = 1.

Using the symmetry property and addition theorem of the reduced Wigner d-matrix elements we

obtain ( discussed in Apendix IV)

|Am|2
+j
∑

m′=−j

e2ξm′

dj
mm′(−

π

2
)dj

m′m(
π

2
) = 1

or,

|Am|2dj
mm(2iξ) = 1

or,

|Am|2 =
1

dj
mm(2iξ)

=
1

∆
. (2.25)

Since the overall phase factor in a state vector is not important hence, we can consider

Am =
1

√

dj
mm(2iξ)

=
1√
∆
. (2.26)

∆ can be obtained by putting β = 2iξ and m = m′ in Eq. (2.23) and we get

∆ = dj
mm(2iξ) = (j +m)!(j −m)!

∑

k

(cosh ξ)2j(tanh ξ)2k

(k!)2(j +m− k)!(j −m− k)!
. (2.27)

It is to be noted here that the quantity ∆ = dj
mm(2iξ) is the analytic continuation of the reduced

Wigner d-matrix elements for imaginary angle. We now proceed to calculate the average values,

correlations and the variances of angular momentum operators over the state |Ψm〉 as these are

necessary for determining the squeezing aspect of the system.

2.4. Moments and Correlations for a System in State |Ψm〉
As |Ψm〉 is an eigenvector of the operator Λ̂ with eigenvalue m, we write

Λ̂|Ψm〉 = (Ĵx cosh ξ + iĴy sinh ξ)|Ψm〉 = m|Ψm〉. (2.28)

The dual of the above is written as

〈Ψm|Λ̂† = 〈Ψm|(Ĵx cosh ξ − iĴy sinh ξ) = 〈Ψm|m. (2.29)



2.4 Moments and Correlations for a System in State |Ψm〉 45

Taking the scalar product of both sides of Eq. (2.28) by 〈Ψm| and equating the real and imaginary

parts we get,

〈Ψm|Ĵx|Ψm〉 =
m

cosh ξ
(2.30)

and

〈Ψm|Ĵy|Ψm〉 = 0. (2.31)

Taking the scalar product of Eq. (2.28) with it’s dual i.e. Eq. (2.29) viz.

〈Ψm|Λ̂†Λ̂|Ψm〉 = m2, (2.32)

we obtain

cosh2 ξ〈Ψm|Ĵ2
x|Ψm〉 + sinh2 ξ〈Ψm|Ĵ2

y |Ψm〉 + i sinh ξ cosh ξ〈Ψm|[Ĵx, Ĵy]|Ψm〉 = m2

or,

cosh2 ξ〈Ψm|Ĵ2
x|Ψm〉 + sinh2 ξ〈Ψm|Ĵ2

y |Ψm〉 − sinh ξ cosh ξ〈Ψm|Ĵz|Ψm〉 = m2. (2.33)

Operating with Λ̂ on both sides of Eq. (2.28) and then taking the scalar product with 〈Ψm|
we get

〈Ψm|Λ̂2|Ψm〉 = m2. (2.34)

More explicitly it is

cosh2 ξ〈Ψm|Ĵ2
x |Ψm〉 − sinh2 ξ〈Ψm|Ĵ2

y |Ψm〉 + i sinh ξ cosh ξ〈Ψm|ĴxĴy + ĴyĴx|Ψm〉 = m2.

Equating the real and imaginary parts we obtain

cosh2 ξ〈Ψm|Ĵ2
x|Ψm〉 − sinh2 ξ〈Ψm|Ĵ2

y |Ψm〉 = m2 (2.35)

and

〈Ψm|ĴxĴy + ĴyĴx|Ψm〉 = 0. (2.36)

This is one of the correlations needed to analyse the squeezing aspect of the state |Ψm〉. We

now calculate the remaining correlations and for that we operate both sides of Eq. (2.28) by Ĵz

from left and then take the scalar product with 〈Ψm| and obtain

〈Ψm|Ĵz(Ĵx cosh ξ + iĴy sinh ξ)|Ψm〉 = m〈Ψm|Ĵz|Ψm〉. (2.37)

Taking complex conjugate of both sides we obtain

〈Ψm|(Ĵx cosh ξ − iĴy sinh ξ)Ĵz|Ψm〉 = m〈Ψm|Ĵz|Ψm〉. (2.38)

Adding Eqs. (2.37) and (2.38) we have
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cosh ξ〈Ψm|ĴzĴx + ĴxĴz|Ψm〉 + i sinh ξ〈Ψm|[Ĵz, Ĵy]|Ψm〉 = 2m〈Ψm|Ĵz|Ψm〉

or,

〈Ψm|ĴxĴz + ĴzĴx|Ψm〉 =
2m

cosh ξ
〈Ψm|Ĵz|Ψm〉 −

sinh ξ

cosh ξ
〈Ψm|Ĵx|Ψm〉.

Using Eq. (2.30) we have

〈Ψm|ĴxĴz + ĴzĴx|Ψm〉 =
2m

cosh ξ
〈Ψm|Ĵz|Ψm〉 −m

sinh ξ

cosh2 ξ
. (2.39)

Subtracting Eq. (2.38) from Eq. (2.37) we have

〈Ψm|[Ĵz, Ĵx]|Ψm〉 cosh ξ + i sinh ξ〈Ψm|ĴyĴz + ĴzĴy|Ψm〉 = 0

or,

〈Ψm|Ĵy|Ψm〉 cosh ξ + sinh ξ〈Ψm|ĴyĴz + ĴzĴy|Ψm〉 = 0.

Using Eq. (2.31) we obtain

〈Ψm|ĴyĴz + ĴzĴy|Ψm〉 = 0. (2.40)

To calculate 〈Ψm|Ĵz|Ψm〉 we proceed as below.

Ĵz|Ψm〉 = ĴzAm

+j
∑

m′=−j

dj
m′m(

π

2
)eξm′ |j,m′〉

= Am

+j
∑

m′=−j

dj
m′m(

π

2
)eξm′

m′|j,m′〉.

Taking scalar product by 〈Ψm| we obtain

〈Ψm|Ĵz|Ψm〉 = |Am|2
+j
∑

m′=−j

+j
∑

m′′=−j

dj
m′′m(

π

2
)dj

m′m(
π

2
)eξ(m′+m′′

m′〈j,m′′|j,m′〉

= |Am|2
+j
∑

m′=−j

dj
m′m(

π

2
)dj

m′m(
π

2
)e2ξm′

m′

= |Am|2
1

2

d

dξ

+j
∑

m′=−j

dj
mm′(−

π

2
)dj

m′m(
π

2
)e2ξm′

= |Am|2
1

2

d

dξ
dj

mm(2iξ). (2.41)

Using Eq. (2.25) we obtain

〈Ψm|Ĵz|Ψm〉 =
1

2∆

d∆

dξ
. (2.42)



2.4 Moments and Correlations for a System in State |Ψm〉 47

With this expression of 〈Ĵz〉 Eq. (2.39) becomes

〈Ψm|ĴxĴz + ĴzĴx|Ψm〉 =
m

cosh ξ

1

∆

d∆

dξ
−m

sinh ξ

cosh2 ξ
. (2.43)

In the same manner it can be shown that

〈Ψm|Ĵ2
z |Ψm〉 = |Am|2

d2

dξ2
[dj

mm(2iξ)] =
1

4∆

d2∆

dξ2
. (2.44)

Adding Eqs. (2.33) and (2.35) and using Eq. (2.42) we get

〈Ψm|Ĵ2
x|Ψm〉 =

m2

cosh2ξ
+

1

4∆
tanh ξ

d∆

dξ
. (2.45)

Subtracting Eq. (2.35) from Eq. (2.33) and using Eq. (2.42) we obtain

〈Ψm|Ĵ2
y |Ψm〉 =

1

4∆
coth ξ

d∆

dξ
. (2.46)

The quantity d∆
dξ

is expressed in suitable form. Differentiating once the expression of ∆ as

given in Eq. (2.27) we obtain
d∆

dξ
= tanh ξΓ (2.47)

with

Γ = 2j∆ + 2
η1

cosh2ξ
(2.48)

where η1 is given as

η1 = (cosh ξ)2j(j +m)!(j −m)!
∑

k

(tanh ξ)2k

k!(k + 1)!(j +m− 1 − k)!(j −m− 1 − k)!
. (2.49)

To express d2∆
dξ2 in suitable form we use the differential equation satisfied by the rotation matrix

element Dj
m′m(α, β, γ) familiar from the quantum mechanics of a symmetric top. The detail

discussion has been presented in the Apendix IV and here is the final expression as

d2∆

dξ2
= 4j(j + 1)∆ − 4

m2∆

cosh2ξ
+ 2 coth 2ξ

d∆

dξ
. (2.50)

Using Eq. (2.47) this can be expressed as

d2∆

dξ2
= 4j(j + 1)∆ − 4

m2∆

cosh2ξ
+ Γ

cosh 2ξ

cosh2ξ
. (2.51)

Thus we have obtained all the necessary averages, correlations and variances of the angular

momentum operators over |Ψm〉. We now proceed to analyse the squeezing aspect of the state

|Ψm〉.
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2.5. Squeezing Aspect of the State |Ψm〉
From Eqs. (2.30), (2.31) and (2.42) it is evident that the mean angular momentum vector 〈Ĵ〉
is not along the z-axis and lies on the z − x plane making an angle say θ1 with the z-axis. As

mentioned in section 1.3 of Chapter 1, to determine whether the state |Ψm〉 is squeezed or not

we first align the vector 〈Ĵ〉 along the z-axis by performing a rotation as below.

Ĵ ′
x = Ĵx cos θ1 − Ĵz sin θ1 (2.52)

Ĵ ′
y = Ĵy (2.53)

Ĵ ′
z = Ĵx sin θ1 + Ĵz cos θ1 (2.54)

with

tan θ1 =
〈Ĵx〉
〈Ĵz〉

. (2.55)

This rotation makes 〈Ĵ ′
x〉 = 0 and since 〈Ĵy〉 is already zero as given in Eq. (2.31), the vector

〈Ĵ〉 is now along the z-axis. We now observe the variances in Jx
′ and Jy

′. As Ĵ ′
y = Ĵy, hence

the variance in Jy
′ is the same as Jy i.e.

∆Jy
′ =

√

〈Ĵ ′2
y 〉 − 〈Ĵ ′

y〉
2

=
√

〈Ĵ2
y 〉 − 〈Ĵy〉2

= ∆Jy. (2.56)

As 〈Ĵy〉 = 0 by Eq. (2.31), therefore,

∆Jy
2 = 〈Ĵ2

y 〉 =
1

4∆
coth ξ

d∆

dξ
= ∆Jy

′2 (2.57)

where we have used Eq. (2.46).

On the other hand since 〈Ĵ ′
x〉 = 0, the square of the variance in Jx

′ is given as

∆Jx
′2 = 〈Ĵ ′2

x 〉. (2.58)

Therefore, using Eq. (2.52)

∆Jx
′2 = 〈Ĵ2

x〉 cos2 θ1 + 〈Ĵ2
z 〉 sin2 θ1 − 〈ĴxĴz + ĴzĴx〉 sin θ1 cos θ1. (2.59)

Using Eqs. (2.43), (2.44), (2.45) and (2.55) etc. we obtain
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∆Jx
′2 =

[

m2

cosh2 ξ
+

tanh2 ξ

4

(

Γ

∆

)2
]−1[

(

tanh2 ξ

4

)2(
Γ

∆

)3

+
j(j + 1)m2

cosh2 ξ
− m2

4 cosh4 ξ

Γ

∆

]

− m2

cosh2 ξ
. (2.60)

It is to be noted that since Γ
∆

is symmetric about m = 0, which can be verified from the Eqs.

(2.27), (2.48) and (2.49), the quantity ∆Jx
′2 is also symmetric about m = 0. For m = ±j we

have

∆Jx
′2 = ∆Jy

′2 =
j

2
. (2.61)

We observe that they are independent of the squeeze parameter ξ and the corresponding state

is in a minimum uncertainty state. However, for |m| < j, we show that the state |Ψm〉 is a

squeezed state. For ξ = 0 we observe that

∆Jx
′2 = ∆Jy

′2 =
1

2

[

j(j + 1) −m2
]

, (2.62)

which is the same as that for the Wigner state |j,m〉. This is expected since, ξ = 0 represents a

thermal field which do not bring any squeezing at all.

To calculate the amount of squeezing we define two parameters S and Q as

S =

√

2

|〈Ĵ〉|
∆Jx

′ (2.63)

and

Q =

√

2

|〈Ĵ〉|
∆Jy

′. (2.64)

If the system has squeezing in the x′-component then the quantity S goes below 1 and if it

has squeezing in the y′-component then Q goes below 1. The quantity 〈Ĵ〉 is the mean angular

momentum vector as discussed in section 1.3 of Chapter 1. Using Eqs. (2.30), (2.31) and (2.42)

we get the magnitude of 〈Ĵ〉 as

|〈Ĵ〉| =

√

〈Ĵx〉
2
+ 〈Ĵy〉

2
+ 〈Ĵz〉

2
=

[

m2

cosh2 ξ
+

1

4
tanh2 ξ

(

Γ

∆

)2] 1

2

. (2.65)

We now analyse the squeezing in y′-component. Using Eqs. (2.57), (2.64 and (2.65) we can

write

Q =

[

1
√

4m2∆2

Γ2 cosh2 ξ
+ tanh2 ξ

]
1

2

. (2.66)

If squeezing is to be present in the y′-component then for at least some range of ξ, Q should

achieve value less than one. For this purpose the denominator in the above expression should
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go above one in that range of ξ. We therefore, concentrate on the denominator of the above

expression which is

D =

[

4m2∆2

Γ2 cosh2 ξ
+ tanh2 ξ

]
1

4

. (2.67)

If D > 1 then D4 > 1. Now

D4 =
4m2∆2

Γ2 cosh2 ξ
+ tanh2 ξ. (2.68)

To find out whether D4 > 1 we see whether the quantity 1 −D4 is negative or not.

Now

1 −D4 = 1 − 4m2∆2

Γ2 cosh2 ξ
− tanh2 ξ

=
1

cosh2 ξ

[

1 − 4m2∆2

Γ2

]

=
1

Γ2 cosh2 ξ

[

Γ2 − 4m2∆2

]

=
1

Γ2 cosh2 ξ

[

Γ − 2m∆

] [

Γ + 2m∆

]

. (2.69)

We first deal with the case m > 0. Using Eq. (2.48) we get

Γ − 2m∆ = 2j∆ + 2
η1

cosh2ξ
− 2m∆

= 2(j −m)∆ + 2
η1

cosh2ξ
. (2.70)

Since m ≤ j, hence (j − m) ≥ 0 and also the quantities ∆ and η1 are positive which is

prominent from Eqs. (2.27) and (2.49). Therefore, the quantity (Γ − 2m∆) is positive. The

quantity (Γ+2m∆) is already positive as we have assumed m > 0. Therefore for m > 0, 1−D4

is positive.

For m < 0 we let

m = −m′ (2.71)

with m′ > 0 and hence Eq. (2.69) becomes

1 −D4 =
1

Γ2 cosh2 ξ

[

Γ + 2m′∆

] [

Γ − 2m′∆

]

. (2.72)

As m ≥ −j, hence m′ ≤ j and hence like the previous case Γ − 2m′∆ > 0, implying 1 −D4 as

positive. Therefore, for both m > 0 and m < 0 we have

1 −D4 > 0 (2.73)
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Figure 2.1: Variation of S as a function of the radiation field squeeze parameter ξ with j = 20. S
and ξ are plotted on the vertical and horizontal axes respectively. Note that S > 1 for ξ = 0.

Figure 2.2: Variation of |〈Ĵ〉| as a function of the radiation field squeeze parameter ξ with j=20.

|〈Ĵ〉| and ξ are plotted on the vertical and horizontal axes respectively.
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and hence we have

Q > 1, (2.74)

implying no squeezing in the y′-component.

To detemine whether there is any squeezing in the x′-component we plot S as a function of ξ in

Figure 2.1. We notice from the figure that S has a very high value at ξ = 0 and then it decreases

very rapidly and goes below 1 with increase in ξ. It reaches a minimum and then again increases

slowly towards 1 with further increase in ξ. As ξ −→ ∞, S −→ 1. We have taken j = 20 and

plotted three graphs corresponding to m = 1, 10 and 15. We notice that as the difference j−|m|
increases, the minimum value of S also decreases below 1, implying increase in squeezing. That

is bigger is the difference between j and m, larger is the squeezing. The reason behind this is

that the correlations among the individual atoms (spins) [13] which are responsible for producing

squeezing, are proportional to j2 −m2. As the difference between j and m increases, the factor

j2 −m2 increases and hence the atomic correlations increases and consequently the amount of

squeezing also increases. For m = 0 the squeezing becomes maximum and then decreases with

increase in |m| and finally vanishes at m = ±j.
We have calculated the correlations in primed components also which are as below:

〈Ĵ ′
xĴ

′
y + Ĵ ′

yĴ
′
x〉 = 0, (2.75)

〈Ĵ ′
yĴ

′
z + Ĵ ′

zĴ
′
y〉 = 0 (2.76)

and

〈Ĵ ′
xĴ

′
z + Ĵ ′

zĴ
′
x〉 =

m

cosh ξ
tanh ξ

[

Γ

∆
+

{

m2

cosh2 ξ
(2.77)

+
tanh2 ξ

4

(

Γ

∆

)2}−1{
(2 cosh2 ξ − 1)

4 cosh2 ξ
(2.78)

×
( Γ

∆

)2

− j(j + 1)
Γ

∆
+

m2

cosh2 ξ

}

]

. (2.79)

We observe that the rotation of the physical system does not introduce any new correlation or

destroy the existing one. It only changes the mathematical form. It is to be also noted that the

non-zero correlations both in the primed and unprimed components vanish for ξ = 0.

In Figure 2.2 we plot |〈Ĵ〉| as a function of ξ and note that as ξ −→ ∞, |〈Ĵ〉| −→ 2j. We can

observe this from the expression of |〈Ĵ〉| given in Eq. (2.65). We see that when ξ = 0 |〈Ĵ〉| = m.

As ξ increases the first term in the braket in Eq. (2.65) decreases. From Eq. (2.27), (2.48) and

(2.49) we find that as ξ −→ ∞, Γ
∆
−→ 2j and hence |〈Ĵ〉| tends to 2j as ξ tends to ∞.

We have studied the variation of the uncertainty product

U =
2

|〈Ĵ〉|
∆Jx

′∆Jy
′ (2.80)
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with respect to ξ and found that in the range of ξ where S is much below 1 the quantity U is

greater than 1 and as ξ increases towards infinity U tends to 1.

2.6. Squeezing Aspect of the State |Φm〉
As given in Eq. (2.16), |Φm〉 is an eigenvector of Λ̂†. It is easy to see that we obtain Λ̂† from

Λ̂ and |Φm〉 from |Ψm〉 by using the transformation ξ → −ξ. Therefore, the average values of

the angular momentum operators and their correlations over the state |Φm〉 are related to those

with respect to |Ψm〉 by the same transformation i.e. ξ → −ξ. Therefore we have

〈Φm|Ĵx|Φm〉 = 〈Ψm|Ĵx|Ψm〉 =
m

cosh ξ
, (2.81)

〈Φm|Ĵy|Φm〉 = 〈Ψm|Ĵy|Ψm〉 = 0, (2.82)

〈Φm|Ĵz|Φm〉 = −〈Ψm|Ĵz|Ψm〉 = − 1

2∆

d∆

dξ
(2.83)

〈Φm|Ĵ2
x|Φm〉 = 〈Ψm|Ĵ2

x|Ψm〉 =
m2

cosh2ξ
+

1

4∆
tanh ξ

d∆

dξ
(2.84)

〈Φm|Ĵ2
y |Φm〉 = 〈Ψm|Ĵ2

y |Ψm〉 =
1

4∆
coth ξ

d∆

dξ
(2.85)

〈Φm|Ĵ2
z |Φm〉 = −〈Ψm|Ĵ2

z |Ψm〉 (2.86)

〈Φm|ĴxĴy + ĴyĴx|Φm〉 = 〈Ψm|ĴxĴy + ĴyĴx|Ψm〉 = 0 (2.87)

〈Φm|ĴyĴz + ĴzĴy|Φm〉 = 〈Ψm|ĴyĴz + ĴzĴy|Ψm〉 = 0 (2.88)

and

〈Φm|ĴxĴz + ĴzĴx|Φm〉 = −〈Ψm|ĴxĴz + ĴzĴx|Ψm〉 = −
[

m

cosh ξ

1

∆

d∆

dξ
−m

sinh ξ

cosh2 ξ

]

. (2.89)

From Eq. (2.57) and (2.60) we see that the variances in Ĵ ′
y and Ĵ ′

x remain same under the

transformation ξ → −ξ and hence the variances in the above operators over the state |Φm〉 are

∆Jy
2 = 〈Ĵ2

y 〉 =
1

4∆
coth ξ

d∆

dξ
= ∆Jy

′2 (2.90)

and

∆Jx
′2 =

[

m2

cosh2 ξ
+

tanh2 ξ

4

(

Γ

∆

)2
]−1[

(

tanh2 ξ

4

)2(
Γ

∆

)3

+
j(j + 1)m2

cosh2 ξ
− m2

4 cosh4 ξ

Γ

∆

]

− m2

cosh2 ξ
(2.91)
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respectively. As it is evident from Eq. (2.65) that the magnitude of the mean angular momentum

vector also remains same under ξ → −ξ hence the squeezing aspect of the state |Φm〉 is same

as that of |Ψm〉.

2.7. Physical Significance of the State |Ψm〉
The dynamics of a collection of N -two level atoms interacting with a squeezed vacuum state of

the electromagnetic field is given by the master equation [15]

dρ̂

dt
= − γ(n+ 1)(Ĵ+Ĵ−ρ̂− 2Ĵ−ρ̂Ĵ+ + ρ̂Ĵ+Ĵ−)

− γn(Ĵ−Ĵ+ρ̂− 2Ĵ+ρ̂Ĵ− + ρ̂Ĵ−Ĵ+)

− γM(Ĵ+Ĵ+ρ̂− 2Ĵ+ρ̂Ĵ+ + ρ̂Ĵ+Ĵ+)

− γM(Ĵ−Ĵ−ρ̂− 2Ĵ−ρ̂Ĵ− + ρ̂Ĵ−Ĵ−) (2.92)

where ρ̂ is the reduced density operator for the atomic (spin) system obtained after tracing over

the squeezed vacuum. Ĵ+ and Ĵ− are the raising and lowering operators for angular momentum

states with the angular momentum quantum number j = N
2
. γ is the usual atomic decay constant

in the ordinary (un-squeezed vacuum). n is known as average photon number of the squeezed

vacuum and is given as

n̄ = sinh2 r (2.93)

where r has been assumed to be a real and positive parameter, which is called squeeze parameter

for the radiation field and

M = n̄(n̄ + 1). (2.94)

For r = 0, the atomic system interacts with the ordinary vacuum of the radiation field. Defining

a non-Hermitian operator Λ̂ as

Λ̂ =
[

Ĵ− cosh r + Ĵ+ sinh r
]

/
√

2 sinh 2r (2.95)

such that

Ĵ− =
[

Λ̂ cosh r − Λ̂† sinh r
]√

2 sinh 2r (2.96)

the Eq. (2.92) can be casted in the form

dρ̂

dt
= −2γ

[

Λ̂†Λ̂ρ̂− 2Λ̂ρ̂Λ̂† + ρ̂Λ̂†Λ̂
]

sinh 2r. (2.97)

The steady state solution of this equation is

ρ̂ = DΛ̂−1(Λ̂†)−1, (2.98)
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where D is a constant. Here we have assumed that Λ̂−1 exists. Using the substitution

e2ξ = tanh r (2.99)

(ξ is a real positive parameter) in Eq. (2.95) we obtain

Λ̂ = Ĵx cosh ξ + iĴy sinh ξ (2.100)

which is Eq. (2.6). We have studied its properties in detail in previous sections. Since j = N
2
, j is

an integer when N is even and one of the value of m is zero. When m is zero the corresponding

eigenvector of Λ is |Ψ0〉 satisfying

Λ̂|Ψ0〉 = 0|Ψ0〉 = 0. (2.101)

If we let

ρ̂ = |Ψ0〉〈Ψ0|, (2.102)

then we see that ρ̂ becomes one of the steady state solution of Eq. (2.97). Thus, a pure

state solution of Eq. (2.97) is |Ψ0〉. For odd number of atoms the solution of Eq. (2.97) is

found from Eq. (2.98) which is as follows. Inserting the identity operator
∑j

m=−j |Ψm〉〈Φm| =
∑j

n=−j |Φn〉〈Ψn| = 1 into Eq. (2.98) we obtain

ρ̂ = DΛ̂−1

+j
∑

m=−j

|Ψm〉〈Φm|(Λ̂†)−1

+j
∑

n=−j

|Φn〉〈Ψn|. (2.103)

Since

Λ̂|Ψm〉 = m|Ψm〉

we see that

Λ̂−1Λ̂|Ψm〉 = mΛ̂−1|Ψm〉 (2.104)

or,

Λ̂−1|Ψm〉 =
1

m
|Ψm〉. (2.105)

Similarly since,

Λ̂†|Φm〉 = m|Φm〉

we see that

(Λ̂†)−1|Φm〉 =
1

m
|Φm〉. (2.106)
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Using Eq. (2.105) and (2.106) in Eq. (2.103) we obtain

ρ̂ = D

+j
∑

m=−j

1

m
|Ψm〉〈Φm|

+j
∑

n=−j

1

n
|Φn〉〈Ψn|

= D

+j
∑

m=−j

+j
∑

n=−j

1

mn
|Ψm〉〈Φm|Φn〉〈Ψn|

= D

+j
∑

m=−j

+j
∑

n=−j

1

mn
〈Φm|Φn〉|Ψm〉〈Ψn|. (2.107)

Thus we see that the steady state solution of Eq. (2.97) is obtained from |Ψm〉. The pure

state solution is |Ψ0〉 and the mixed state solution is given by Eq. (2.107). Therefore, we say

that |Ψm〉 represents a collection of two-level atoms interacting with a squeezed vacuum of the

electromagnetic field.

2.8. Conclusion

We have studied the squeezing aspect of the atomic state |Ψm〉 in a proper frame in which the

fundamental and inherent uncertainty of the system was extracted out. We observed that the

state |Ψm〉 is a squeezed state.

When a system of two level atoms interact with the squeezed vacuum of the electromagnetic

field, the system goes to a squeezed state and the resultant collective state vector is given by

|Ψm〉 which is the eigenvector of a non-Hermitian operator Λ̂ = Ĵx cosh ξ+iĴy sinh ξ, having real

eigenvalue spectrum. We have given the underlying mathematical reason for the reality of the

eignvalue spectrum of Λ̂. The relevant reason is nothing but the property of pseudo-Hermiticity

satisfied by Λ̂. Since the squeezing of a system of atoms is experimentaly observable now a days

, we hope that the concepts of pseudo-Hermitian operators which are widely recognized recently

in the context of non unitary quantum mechanics, get a connection with a real physical example

from the domain of quantum optics.

We have expressed the state |Ψm〉 involving the reduced Wigner d-matrices for making the

necessary calculations simple and as a consequence have introduced the analytical continuation

of the d-matrices to imaginary angles.

Wineland et al [14] and Agarwal and Puri [15] investigated the spectroscopic squeezing of the

atomic systems interacting with a squeezed radiation field by introducing a parameter R which

is related to S in Eq.(2.63) by the relation

R =

√

j

|〈Ĵ〉|
S. (2.108)
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Figure 2.3: Comparison of spin squeezing S with spectroscopic squeezing R. Both S and R are

plotted on the vertical axis as a function of ξ on the horizontal axis with j=20 and m=1.

We see that whenever |〈Ĵ〉| = j , R = S. When j > |〈Ĵ〉| (which may be the case in dissipative

system), the system may not show spectroscopic squeezing even if S < 1. We give a comparison

in Figure 2.3 between R and S and observe that the difference among them is very small for the

present system.
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3. A Generic Spin Squeezing Operator

3.1. Introduction

It is well known that squeezing can be achieved in an atomic system, initially in a coherent

state, when the atoms are made to evolve under nonlinear optical interactions. One method

of obtaining nonlinear interaction between atoms and radiation field is to use the interaction

Hamiltonian, inherently nonlinear in spin operators. It is possible to construct many such nonlinear

Hamiltonians which can produce squeezing, however, the interest lies in obtaining a generic spin

squeezing Hamiltonian which though nonlinear, has the simplest structure and serves to study

the aspects of squeezing from a general point of view.

In the previous chapter we studied a pseudo-Hermitian operator Λ̂ whose eigenstates are

squeezed atomic states. We pointed out that this operator appears in the case of N two level

atoms interacting with the squeezed vacuum state of the radiation field. In this chapter we try to

develop a generic spin squeezing Hamiltonian which though nonlinear in spin operators has the

simplest structure. We proceed in analogy with the squeezing mechanism of the radiation field.

3.2. Spin Squeezing Operator

We begin with a very brief review of the squeezing aspect of the radiation field states as our

quest for obtaining a generic squeezing operator for the atomic system goes in analogy with that

for the radiation field.

The coherent state for the radiation field, also known as the Glauber-Sudarshan coherent state

[1, 2], is given as

|α〉 = D̂(α) |0〉 (3.1)

= exp(αâ† − α⋆â) |0〉 , (3.2)

where α is a complex parameter and |0〉 is the vacuum state of the radiation field. The operators

â and â† are the annihilation and creation operators respectively for the radiation field states

satisfying

[â, â†] = 1 (3.3)
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and D̂(α) is the well known displacement operator.

The squeezing operator in this case is given as [3]

Ŝ(ζ) = exp

[

1

2
(ζâ2 − ζ⋆â†2)

]

, (3.4)

where ζ is another complex parameter. According to Yuen’s representation for the squeezed

state [4], the operator Ŝ(ζ) when acts on |α〉 produces a squeezed state |STE〉 (STE stands for

squeezed state of the electromagnetic field) of the field as

|STE〉 = Ŝ(ζ) |α〉. (3.5)

Our aim is to obtain a generic squeezing operator for the atomic system which can squeeze a

system of atoms initialy in a coherent state in the same way as Ŝ(ζ) squeezes |α〉, though the

algebra of the spin operators is quite different from that of the annihilation and creation operators

for the field states.

We first express the atomic coherent state |j, χ〉 in the analogous form as that in Eq. (3.1) for

the field coherent state. That is we want to find an operator say D̂(j, χ) (with χ as some complex

parameter) such that D̂(j, χ) acting on a vacuum state produces the atomic coherent state |j, χ〉.
For this purpose we take the help of Scwhinger representation of angular momentum operators [5].

In Schwinger representation we define two kinds of bosonic annihilation and creation operators

âi and â†i(i = +,−) respectively, corresponding to two uncoupled harmonic oscillators, one say

is of plus(+) type and the other say is of minus(−) type, such that

[âi, â
†
j] = δij (3.6)

and

[âi, âj] = 0 = [â†i , â
†
j ]. (3.7)

If we construct operators Ĵ+ and Ĵ− as

Ĵ+ = ~â†+â−, (3.8)

Ĵ− = ~â†−â+ (3.9)

and

Ĵz =
1

2
~
[

â†+â+ − â†−â−
]

(3.10)

then it is found that Ĵ+, Ĵ− and Ĵz satisfy the same commutation relations as the angular

momentum operators. The atomic coherent state in this representation is written as

|j, χ〉 =
1√

2j!(1 + |χ|2)j

2j
∑

n=0

2jCnχ
n(â†+)n(â†−)2j−n|0+, 0−〉 (3.11)

= D̂(j, χ) |0+, 0−〉 (3.12)
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where |0+, 0−〉 is the vacuum (fictitious) state for the two kinds of oscillators. The details have

been presented in Apendix II. We see that Eq. (3.12) looks similar to Eq. (3.1) and thus we can

say that the operator D̂(j, χ) for atomic coherent state is analogous to the operator D̂(α) for the

radiation field coherent state, though their interpretations are quite different from one another.

We now develop the spin squeezing Hamiltonian for the atomic system. We consider, keeping

in mind the quadratic form of the bosonic operators in Eq. (3.4), the most general quadratic form

of the angular momentum (pseudo-spin) operators. This has the form ĴlĴk which is a second

rank tensor and can be reduced in the following manner.

ĴlĴk =

[

1

2
(ĴlĴk + ĴkĴl) −

1

3
δlkĴ

2

]

+

[

1

2
(ĴlĴk − ĴkĴl)

]

+

[

1

3
δlkĴ

2

]

. (3.13)

The first term in the first square bracket is a symmetric traceless second rank tensor and has

five independent components. The first term in the second square braket is a second rank

antisymmetric tensor which by virtue of the commutation relation

[

Ĵl, Ĵk

]

= iǫlksĴs (3.14)

can be expressed in terms of a vector representation. The last term in the square brackets

involving Ĵ2, is a scalar. This is tantamount to the reduction of the direct product of two vectors

as

3 ⊗ 3 = 5 ⊕ 3 ⊕ 1. (3.15)

Thus the quadratic of spin operators ĴlĴk can be decomposed into the sum of three operators

with the trace
∑

ĴlĴkδlk = Ĵ2 (3.16)

yielding a mere overall phase, the antisymmetric tensor part just a rotation and the symmetric

second rank tensor part yielding the nontrivial squeeze. Since the different components of the

quadrupole tensor are related to each other by rotations, the generic squeezing Hamiltonians with

very simple forms for the atomic system can be chosen, for example, the fiducial quadratic forms

Ĥspin = g1(ĴxĴy + ĴyĴx) =
1

2i
g1(Ĵ

2
+ − Ĵ2

−) (3.17)

and

Ĥ ′
spin = g2 Ĵ

2
z , (3.18)
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where g1 and g2 are real parameters. Thus the squeezing operators can be constructed out of

these Hamiltonians as

Ûspin = exp(−iĤspint/~) = exp
[

− ig1t(ĴxĴy + ĴyĴx)/~
]

= exp
[

− g1t(Ĵ
2
+ − Ĵ2

−)/(2~)
]

= exp
[

γ(Ĵ2
+ − Ĵ2

−)
]

, (3.19)

where γ = −g1t/(2~) and

Û ′
spin = exp(−iĤ ′

spint/~) = exp
[

− ig2tĴ
2
z /~
]

= exp
[

− iβĴ2
z

]

, (3.20)

where β = g2t/~.

To keep form analogy with the squeezing operator for the radiation field in Eq. (3.4) we

consider the generic spin squeezing operators for the atomic systems by slightly modifying Ûspin

in Eq. (3.19) by inserting a complex parameter η in place of the real parameter γ as

Ŝspin(η) = exp
(

ηĴ2
+ − η⋆Ĵ2

−

)

, (3.21)

and

Ŝ ′
spin(β) = Û ′

spin = exp
[

− iβĴ2
z

]

. (3.22)

Thus, if |SSS〉 represents the spin squeezed state or atomic squeezed state then

|SSS〉 = Ŝ(η)D̂(j, χ)|0+, 0−〉 (3.23)

= Ŝ(η)|j, χ〉 (3.24)

(3.25)

and also

|SSS〉 = Ŝ(β)D̂(j, χ)|0+, 0−〉 (3.26)

= Ŝ(β)|j, χ〉. (3.27)

This is indeed the case which is evident from the following analysis.

The possible types of quadratic Hermitian Hamiltonians which can be constructed out of the

three basic spin operators Ĵx, Ĵy and Ĵz are

Ĥ1 ∝ Ĵ2
x , (3.28)

Ĥ2 ∝ Ĵ2
y , (3.29)

Ĥ3 ∝ Ĵ2
z , (3.30)

Ĥ4 ∝ ĴxĴy + ĴyĴx, (3.31)

Ĥ5 ∝ ĴyĴz + ĴzĴy (3.32)
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and

Ĥ6 ∝ ĴzĴx + ĴxĴz. (3.33)

Since the spin operators Ĵx, Ĵy and Ĵz are connected to each other by rotations as

ei π
2
Ĵy Ĵx e

−i π
2
Ĵy = Ĵz, (3.34)

ei π
2
Ĵx Ĵz e

−i π
2
Ĵx = Ĵy, (3.35)

ei π
2
Ĵz Ĵy e

−i π
2
Ĵz = Ĵx, (3.36)

the Hamiltonians Ĥ1, Ĥ2 and Ĥ3 are also related to each other by rotations as

ei π
2
Ĵy Ĥ1 e

−i π
2
Ĵy = Ĥ3, (3.37)

ei π
2
Ĵx Ĥ3 e

−i π
2
Ĵx = Ĥ2 (3.38)

and

ei π
2
Ĵz Ĥ2 e

−i π
2
Ĵz = Ĥ1. (3.39)

Therefore, it is sufficient to study the dynamics produced by any one of the three Hamiltonians

Ĥ1, Ĥ2 and Ĥ3. The results of the dynamics produced by any one Hamiltonian, can be used

to obtain the results of the dynamics produced by the other Hamiltonians by using the rotations

mentioned in Eqs. (3.34) to (3.36).

Regarding the next three remaining Hamiltonians in Eqs. (3.31), (3.32) and (3.33) we see that

they are also mutually related to each other by rotations given in Eqs. (3.34), (3.35) and (3.36)

as

ei π
2
Ĵy Ĥ4 e

−i π
2
Ĵy = Ĥ5, (3.40)

ei π
2
Ĵz Ĥ5 e

−i π
2
Ĵz = Ĥ6, (3.41)

ei π
2
Ĵx Ĥ6 e

−i π
2
Ĵx = Ĥ4. (3.42)

Therefore, like the earlier case, it is sufficient to study the dynamics produced by any one out of

the three Hamiltonians Ĥ4, Ĥ5 and Ĥ6.

We study the dynamics of an initially prepared coherent state under the influence of the Hamil-

tonian in Eq. (3.31) in the next chapter. The spin squeezing dynamics due to the Hamiltonian

in Eq. (3.30) is dealt in Chapter 5.
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4. Spin Squeezing by a Hamiltonian

Having the Form ĴxĴy + ĴyĴx

4.1. Introduction

In this chapter, we consider spin squeezing produced by the Hamiltonian

Ĥspin = g1(ĴxĴy + ĴyĴx)

=
1

2i
g1(Ĵ

2
+ − Ĵ2

−) (4.1)

generating time evolution on a system of N two-level atoms initially in a coherent state [1]

|j, χ〉 =
1

(

1 + |χ|2
)j

2j
∑

n=0

√

2jCn χ
n |j,m = j − n〉 , (4.2)

where χ is a complex parameter, refer [Chapter 1, section 1.3, Eq. (1.113)]. This state can be

prepared by sending the atoms through a cavity whose single mode is maintained by the radiation

from a laser. The time evolution operator corresponding to the above Hamiltonian in Eq. (4.1)

is

Ûspin = exp(−iĤspint/~)

= exp
[

− g1t(Ĵ
2
+ − Ĵ2

−)/(2~)
]

= exp
[

γ(Ĵ2
+ − Ĵ2

−)
]

, (4.3)

where γ = −g1t/(2~). To see the spin squeezing dynamics produced by the above Hamiltonian

on an initial atomic coherent state, we have to apply the above operator on the state |j, χ〉 and

then analyse the squeezing aspects. But as the spin squeezing operator, considered by us in

Chapter 3, corresponding to the above Hamiltonian in Eq. (4.1) is

Ŝspin(η) = exp
(

ηĴ2
+ − η⋆Ĵ2

−

)

, (4.4)

we concentrate on the action of Ŝspin(η) on the state |j, χ〉.
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For the sake of simplicity we first consider the action of Ŝspin on a coherent state for two

atoms (bipartite system) only in section 4.2. This gives analytical results and presents a deeper

insight into the subject. In section 4.3 we study the case of more than two atoms numerically.

The possibilities of physical realization of the operator Ŝspin has been dealt in section 4.4 and

the conclusion of this chapter has been presented in section 4.5.

4.2. A Two Atom System

4.2.1. Derivation of the Expression of Coherent State for Two Atoms

The coherent state for two-atoms (j = 1) is obtained by putting j = 1 in Eq. (4.2) which yields

|j = 1, χ〉 =
1

(1 + |χ|2)
[

|1, 1〉 +
√

2χ|1, 0〉 + χ2|1,−1〉
]

. (4.5)

This is a linear superposition of the three Wigner states with j = 1 and m = 1, 0, and −1

respectively. We apply the operator Ŝspin(η) given in Eq. (??) on this state vector such that,

|1, χ, η〉 = Ŝ(η)|1, χ〉 (4.6)

= e[ηĴ2
+−η⋆Ĵ2

−] 1

(1 + |χ|2)
[

|1,+1〉 +
√

2χ|1, 0〉 + χ2|1,−1〉
]

. (4.7)

To evaluate this expression we have to know the action of the operator Ŝ(η) on the states

|1, 1〉, |1, 0〉 and |1,−1〉. We therefore, now proceed to find out the action of Ŝ(η) on these

states one by one. First we want to calculate

Ŝ(η)|1,−1〉 = e[ηĴ2
+
−η⋆Ĵ2

−]|1,−1〉. (4.8)

Now,

e[ηĴ2
+
−η⋆Ĵ2

−]|1,−1〉 =

[

1 + (ηĴ2
+ − η⋆Ĵ2

−) +
(ηĴ2

+ − η⋆Ĵ2
−)2

2!
+ .....

]

|1,−1〉. (4.9)

We can check that
(

ηĴ2
+ − η⋆Ĵ2

−

)

|1,−1〉 = 2η|1, 1〉. (4.10)

Using this equation we can get,
(

ηĴ2
+ − η⋆Ĵ2

−

)2

|1,−1〉 =
(

ηĴ2
+ − η⋆Ĵ2

−

)

2η|1, 1〉
= −22|η|2|1,−1〉. (4.11)

Using this we can obtain,
(

ηĴ2
+ − η⋆Ĵ2

−

)3

|1,−1〉 =
(

ηĴ2
+ − η⋆Ĵ2

−

)(

− 22|η|2
)

|1,−1〉
= −23|η|2η|1, 1〉. (4.12)
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In the same manner, using the above equation we can obtain

(

ηĴ2
+ − η⋆Ĵ2

−

)4

|1,−1〉 =
(

ηĴ2
+ − η⋆Ĵ2

−

)(

− 23|η|2η
)

|1, 1〉
= 24|η|4|1,−1〉 (4.13)

and so on. Therefore, using the above equations we can evaluate the action of Ŝ(η) on |1,−1〉
as shown below.

e(ηĴ2
+−η⋆Ĵ2

−)|1,−1〉 =

[

1 + (ηĴ2
+ − η⋆Ĵ2

−) +
(ηĴ2

+ − η⋆Ĵ2
−)2

2!
+ .....

]

|1,−1〉

= |1,−1〉 + 2η|1, 1〉 − 22|η|2
(2!)

|1,−1〉

− 23|η|2
(3!)

η|1, 1〉 +
24|η4|

4!
|1,−1〉 + ....

=

[

1 − 22|η|2
2!

+
24|η|4

4!
+ ...

]

|1,−1〉

+

√

η

η⋆

[

2|η| − 23|η|3
3!

+ ...

]

|1, 1〉

= cos 2|η||1,−1〉+

√

η

η⋆
sin 2|η||1, 1〉. (4.14)

In similar fashion we can now evaluate the action of the operator Ŝ(η) on |1, 1〉. We have,

e(ηĴ2
+−η⋆Ĵ2

−)|1, 1〉 =
[

1 + (ηĴ2
+ − η⋆Ĵ2

−) +
(ηĴ2

+ − η⋆Ĵ2
−)2

2!
+ ....

]

|1, 1〉. (4.15)

We can check that,

(

ηĴ2
+ − η⋆Ĵ2

−

)

|1, 1〉 = −2η⋆|1,−1〉. (4.16)

Using this we can have,

(

ηĴ2
+ − η⋆Ĵ2

−

)2

|1, 1〉 =
(

ηĴ2
+ − η⋆Ĵ2

−

)

(−2η⋆)|1,−1〉
= −22|η|2|1, 1〉. (4.17)

Using this we have,

(

ηĴ2
+ − η⋆Ĵ2

−

)3

|1, 1〉 =
(

ηĴ2
+ − η⋆Ĵ2

−

)

(−22|η|2)|1, 1〉
= 23|η|2η⋆|1,−1〉. (4.18)
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Using this we have,

(

ηĴ2
+ − η⋆Ĵ2

−

)4

|1, 1〉 =
(

ηĴ2
+ − η⋆Ĵ2

−

)

(23|η|2η⋆)|1,−1〉
= 24|η|4|1, 1〉 (4.19)

and so on. Using these results we can now write the action of Ŝ(η) on |1, 1〉.

e(ηĴ2
+−η⋆Ĵ2

−)|1, 1〉 =
[

1 + (ηĴ2
+ − η⋆Ĵ2

−) +
(ηĴ2

+ − η⋆Ĵ2
−)2

2!
+ ....

]

|1, 1〉

=
[

|1, 1〉 − 2η⋆|1,−1〉 − 22|η|2
2!

|1, 1〉+
23|η|2η⋆

3!
|1,−1〉 +

24|η|4
4!

|1, 1〉 + ...
]

=
[

1 − 22|η|2
2!

+
24|η|4

4!
+ ....

]

|1, 1〉

+
[

− 2η⋆ +
23|η|2η⋆

3!
+ ....

]

|1,−1〉

= cos 2|η||1, 1〉 −
√

η⋆

η
sin 2|η||1,−1〉. (4.20)

Now as
(

ηĴ2
+ − η⋆Ĵ2

−

)

|1, 0〉 = 0 (4.21)

therefore, the action of Ŝ(η) on |1, 0〉 is as below

e(ηĴ2
+−η⋆Ĵ2

−)|1, 0〉 =
[

1 + (ηĴ2
+ − η⋆Ĵ2

−) +
(ηĴ2

+ − η⋆Ĵ2
−)2

2!
+ ....

]

|1, 0〉
= |1, 0〉. (4.22)

We can now add up the action of Ŝ(η) on the states |1,−1〉, |1, 0〉 and |1, 1〉 and thus, Eq.

(4.7) evolves to

|1, χ, η〉 = Ŝ(η)|1, χ〉
= C1|1,+1〉 + C2|1, 0〉 + C3|1,−1〉 (4.23)

where

C1 =
1

(1 + |χ|2)
[

cos(2|η|) +
√

η/η⋆χ2 sin(2|η|)
]

, (4.24)

C2 =

√
2χ

(1 + |χ|2) (4.25)

and

C3 =
1

(1 + |χ|2)
[

χ2 cos(2|η|) −
√

η⋆/η sin(2|η|)
]

. (4.26)
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That is, the state |1, χ, η〉 is also a linear superposition of the three Wigner states, |1,−1〉, |1, 0〉
and |1, 1〉 with the coefficients given by the above three equations. Since the operator Ŝ(η) is

unitary and the state |1, χ〉 is normalized the state |1, χ, η〉 is also normalized i.e.,

〈1, χ, η|1, χ, η〉 = 1. (4.27)

This implies

|C1|2 + |C2|2 + |C3|2 = 1. (4.28)

We now proceed to calculate the moments and correlation functions of the angular momentum

operators for this state |1, χ, η〉.

4.2.2. Moments and Correlations for the State |1, χ, η〉
For simplicity we assume that the quantities χ and η are real and due to this the expressions of

the coefficients C1, C2 and C3 given in Eqs. (4.24), (4.25) and (4.26) reduce to

C1 =
1

(1 + χ2)

[

cos 2η + χ2 sin 2η
]

, (4.29)

C2 =

√
2χ

(1 + χ2)
, (4.30)

C3 =
1

(1 + χ2)

[

χ2 cos 2η − sin 2η
]

(4.31)

and Eq. (4.28) acquires the form

C2
1 + C2

2 + C2
3 = 1. (4.32)

4.2.3. Calculation of 〈1, χ, η|Ĵx|1, χ, η〉 = 〈Ĵx〉
We know that

Ĵx =
1

2

(

Ĵ+ + Ĵ−

)

. (4.33)

Therefore,

〈Ĵx〉 =
1

2

(

〈Ĵ+〉 + 〈Ĵ−〉
)

=
1

2

(

〈Ĵ+〉 + 〈Ĵ+〉⋆
)

= Re〈Ĵ+〉. (4.34)

As the coefficients C1, C2 and C3 are real the quantity 〈Ĵ+〉 is also real and we have

〈Ĵx〉 = 〈Ĵ+〉. (4.35)
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Hence, we now show the calculation of

〈Ĵ+〉 = 〈1, χ, η|Ĵ+|1, χ, η〉. (4.36)

〈Ĵ+〉 =

[

C1〈1, 1|+ C2〈1, 0|+ C3〈1,−1|
]

Ĵ+

[

C1|1, 1〉 + C2|1, 0〉 + C3|1,−1〉
]

=

[

C1〈1, 1|+ C2〈1, 0|+ C3〈1,−1|
][

√
2C2|1, 1〉 +

√
2C3|1, 0〉

]

=
√

2
(

C1C2 + C2C3

)

. (4.37)

Using the expressions of C1, C2 and C3 as given in Eqs. (4.29), (4.30) and (4.31) we get

〈Ĵ+〉 =
2χ

(1 + χ2)2

[

(1 + χ2) cos 2η − (1 − χ2) sin 2η
]

. (4.38)

Therefore,

〈Ĵx〉 =
2χ

(1 + χ2)2

[

(1 + χ2) cos 2η − (1 − χ2) sin 2η
]

. (4.39)

4.2.4. Calculation of 〈1, χ, η|Ĵy|1, χ, η〉 = 〈Ĵy〉
We know that

Ĵy =
1

2i

(

Ĵ+ − Ĵ−

)

. (4.40)

Therefore,

〈Ĵy〉 =
1

2i

(

〈Ĵ+〉 − 〈Ĵ−〉
)

=
1

2i

(

〈Ĵ+〉 − 〈Ĵ+〉⋆
)

= Im〈Ĵ+〉. (4.41)

We have already seen from the previous subsection that due to the choice of the coefficients

C1, C2 and C3 as real the quantity 〈Ĵ+〉 is also real having no imaginary part and therefore,

〈Ĵy〉 = 0. (4.42)

4.2.5. Calculation of 〈1, χ, η|Ĵz|1, χ, η〉 = 〈Ĵz〉

〈Ĵz〉 =

[

C1〈1, 1|+ C2〈1, 0|+ C3〈1,−1|
]

Ĵz

[

C1|1, 1〉 + C2|1, 0〉 + C3|1,−1〉
]

=

[

C1〈1, 1|+ C2〈1, 0|+ C3〈1,−1|
][

C1|1, 1〉 − C3|1,−1〉
]

= C2
1 − C2

3 . (4.43)
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Using the expressions of C1, C2 and C3 as given in Eqs. (4.29), (4.30) and (4.31) we obtain

〈Ĵz〉 =
1

(1 + χ2)2

[

(1 − χ4) cos 4η + 2χ2 sin 4η
]

. (4.44)

4.2.6. Calculation of 〈1, χ, η|Ĵ2
z |1, χ, η〉 = 〈Ĵ2

z 〉

〈Ĵ2
z 〉 =

[

C1〈1, 1| + C2〈1, 0| + C3〈1,−1|
]

Ĵ2
z

[

C1|1, 1〉 + C2|1, 0〉 + C3|1,−1〉
]

=

[

C1〈1, 1| + C2〈1, 0| + C3〈1,−1|
][

C1|1, 1〉 + C3|1,−1〉
]

= C2
1 + C2

3 . (4.45)

Using the expressions of C1, C2 and C3 as given in Eqs. (4.29), (4.30) and (4.31) we obtain

〈Ĵ2
z 〉 =

1 + χ4

(1 + χ2)2
. (4.46)

4.2.7. Calculation of 〈1, χ, η|Ĵ2|1, χ, η〉 = 〈Ĵ2〉

〈Ĵ2〉 =

[

C1〈1, 1| + C2〈1, 0| + C3〈1,−1|
]

Ĵ2

[

C1|1, 1〉 + C2|1, 0〉 + C3|1,−1〉
]

=

[

C1〈1, 1| + C2〈1, 0| + C3〈1,−1|
][

2C1|1, 1〉 + 2C2|1, 0〉 + 2C3|1,−1〉
]

= 2
(

C2
1 + C2

2 + C2
3

)

. (4.47)

Using Eq. (4.32) we obtain

〈Ĵ2〉 = 2. (4.48)

4.2.8. Calculation of 〈1, χ, η|Ĵ2
x|1, χ, η〉 = 〈Ĵ2

x〉
We know that

Ĵ2
x =

(1

2

)2(

Ĵ+ + Ĵ−

)(

Ĵ+ + Ĵ−

)

=
1

4

(

Ĵ2
+ + Ĵ2

− + Ĵ+Ĵ− + Ĵ−Ĵ+

)

. (4.49)

Now,

Ĵ+Ĵ− + Ĵ−Ĵ+ =
(

Ĵx + iĴy

)(

Ĵx − iĴy

)

+
(

Ĵx − iĴy

)(

Ĵx + iĴy

)

= 2
(

Ĵ2
x + Ĵ2

y

)

= 2
(

Ĵ2 − Ĵ2
z

)

. (4.50)
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Therefore, Eq. (4.49) becomes,

Ĵ2
x =

1

4

(

Ĵ2
+ + Ĵ2

−

)

+
1

2

(

Ĵ2 − Ĵ2
z

)

. (4.51)

Therefore,

〈Ĵ2
x〉 =

1

4

(

〈Ĵ2
+〉 + 〈Ĵ2

−〉
)

+
1

2

(

〈Ĵ2〉 − 〈Ĵ2
z 〉
)

=
1

4

(

〈Ĵ2
+〉 + 〈Ĵ2

+〉⋆
)

+
1

2

(

〈Ĵ2〉 − 〈Ĵ2
z 〉
)

=
1

2

(

Re〈Ĵ2
+〉 + 〈Ĵ2〉 − 〈Ĵ2

z 〉
)

. (4.52)

From Eq. (4.52) we see that to calculate 〈Ĵ2
x〉 we need to calculate 〈Ĵ2

+〉. As C1, C2 and C3

are real, therefore,

Re〈Ĵ2
+〉 = 〈Ĵ2

+〉.
Hence we now show the calculation of 〈Ĵ2

+〉.

〈Ĵ2
+〉 =

[

C1〈1, 1|+ C2〈1, 0|+ C3〈1,−1|
]

Ĵ2
+

[

C1|1, 1〉 + C2|1, 0〉 + C3|1,−1〉
]

=

[

C1〈1, 1|+ C2〈1, 0|+ C3〈1,−1|
]

2C3|1, 1〉

= 2C1C3. (4.53)

Using the expressions of C1 and C3 as given in Eqs. (4.29) and (4.31) we get

〈Ĵ2
+〉 =

1

(1 + χ2)2

[

2χ2 cos 4η + −(1 − χ4) sin 4η
]

. (4.54)

Using this expression of 〈Ĵ2
+〉 in Eq. (4.52) and using Eqs. (4.46) and (4.48) we obtain

〈Ĵ2
x〉 =

1

2
+

1

(1 + χ2)2

[

χ2 + χ2 cos 4η +
1

2
(χ4 − 1) sin 4η

]

. (4.55)

4.2.9. Calculation of 〈1, χ, η|Ĵ2
y |1, χ, η〉 = 〈Ĵ2

y 〉
We know that

Ĵ2
x + Ĵ2

y + Ĵ2
z = Ĵ2. (4.56)

Therefore,

〈Ĵ2
y 〉 = 〈Ĵ2〉 − 〈Ĵ2

x〉 − 〈Ĵ2
z 〉. (4.57)

Using Eq. (4.46), (4.48) and (4.55) in the above equation we obtain

〈Ĵ2
y 〉 =

1

2
+

1

(1 + χ2)2

[

χ2 − χ2 cos 4η − 1

2
(χ4 − 1) sin 4η

]

. (4.58)
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4.2.10. Calculation of 〈1, χ, η|ĴxĴy + ĴyĴx|1, χ, η〉 = 〈ĴxĴy + ĴyĴx〉

We know that

ĴxĴy + ĴyĴx =
1

4i

[(

Ĵ+ + Ĵ−

)(

Ĵ+ − Ĵ−

)

+
(

Ĵ+ − Ĵ−

)(

Ĵ+ + Ĵ−

)]

=
1

2i

(

Ĵ2
+ − Ĵ2

−

)

. (4.59)

Therefore,

〈ĴxĴy + ĴyĴx〉 =
1

2i

(

〈Ĵ2
+〉 − 〈Ĵ2

−〉
)

=
1

2i

(

〈Ĵ2
+〉 − 〈Ĵ2

+〉⋆
)

= Im〈Ĵ2
+〉. (4.60)

As the coefficients C1, C2 and C3 are real hence the quantity 〈Ĵ2
+〉 is also real an so its imaginary

part is zero, implying

〈ĴxĴy + ĴyĴx〉 = 0. (4.61)

4.2.11. Calculation of 〈1, χ, η|ĴxĴz + ĴzĴx|1, χ, η〉 = 〈ĴxĴz + ĴzĴx〉

We know that

ĴxĴz + ĴzĴx =
1

2

[(

Ĵ+ + Ĵ−

)

Ĵz + Ĵz

(

Ĵ+ + Ĵ−

)]

=
1

2

(

Ĵ+Ĵz + ĴzĴ+ + Ĵ−Ĵz + ĴzĴ−

)

. (4.62)

Therefore,

〈ĴxĴz + ĴzĴx〉 =
1

2

(

〈Ĵ+Ĵz〉 + 〈ĴzĴ+〉 + 〈Ĵ−Ĵz〉 + 〈ĴzĴ−〉
)

=
1

2

(

〈Ĵ+Ĵz〉 + 〈ĴzĴ+〉 + 〈ĴzĴ+〉⋆ + 〈Ĵ+Ĵz〉⋆
)

= Re〈Ĵ+Ĵz + ĴzĴ+〉. (4.63)

As the coefficients C1, C2 and C3 are real the quantity 〈Ĵ+Ĵz + ĴzĴ+〉 is also real and we have

〈ĴxĴz + ĴzĴx〉 = 〈Ĵ+Ĵz + ĴzĴ+〉. (4.64)

We now show the calculation of 〈Ĵ+Ĵz + ĴzĴ+〉.
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〈Ĵ+Ĵz + ĴzĴ+〉 =

[

C1〈1, 1| + C2〈1, 0| + C3〈1,−1|
]

(

Ĵ+Ĵz + ĴzĴ+

)

[

C1|1, 1〉 + C2|1, 0〉 + C3|1,−1〉
]

=

[

C1〈1, 1| + C2〈1, 0| + C3〈1,−1|
][

−
√

2C3|1, 0〉 +
√

2C2|1, 1〉
]

=
√

2
(

C1C2 − C2C3

)

. (4.65)

Using the expressions of C1, C2 and C3 as given in Eqs. (4.29), (4.30) and (4.31) we obtain

〈Ĵ+Ĵz + ĴzĴ+〉 =
2χ

(1 + χ2)2

[

(1 − χ2) cos 2η + (1 + χ2) sin 2η
]

. (4.66)

Therefore,

〈ĴxĴz + ĴzĴx〉 =
2χ

(1 + χ2)2

[

(1 − χ2) cos 2η + (1 + χ2) sin 2η
]

. (4.67)

4.2.12. Calculation of 〈1, χ, η|ĴyĴz + ĴzĴy|1, χ, η〉 = 〈ĴyĴz + ĴzĴy〉

We know that

ĴyĴz + ĴzĴy =
1

2i

[(

Ĵ+ − Ĵ−

)

Ĵz + Ĵz

(

Ĵ+ − Ĵ−

)]

=
1

2i

[

Ĵ+Ĵz + ĴzĴ+ − ĴzĴ− − Ĵ−Ĵz

]

. (4.68)

Therefore,

〈ĴyĴz + ĴzĴy〉 =
1

2i

[

〈Ĵ+Ĵz〉 + 〈ĴzĴ+〉 − 〈Ĵ+Ĵz〉⋆ − 〈ĴzĴ+〉⋆
]

= Im〈Ĵ+Ĵz + ĴzĴ+〉. (4.69)

We have already seen in the previous subsection that due to the choice of the coefficients C1, C2

and C3 as real the quantity 〈Ĵ+Ĵz + ĴzĴ+〉 is also real having no imaginary part and therefore,

〈ĴyĴz + ĴzĴy〉 = 0. (4.70)

After deriving all the relevant moments and correlations for the state |1, χ, η〉 we now proceed

to analyse it’s squeezing aspect.
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4.2.13. Squeezing Aspect of the State |1, χ, η〉
We observe from Eqs. (4.39), (4.42) and (4.44) that the mean angular momentum vector

〈Ĵ〉 = 〈Ĵx〉i + 〈Ĵy〉j + 〈Ĵz〉k (4.71)

is not along the z-axis, where i, j and k are the unit vectors along the x, y and z axes respectively.

To analyse the squeezing aspect of the state |1, χ, η〉 we have to go to a proper coordinate frame

in which the mean angular momentum vector 〈Ĵ〉 is along the z-axis. As mentioned earlier, we

choose the direction of alignment of 〈Ĵ〉 along the z-axis by convention and to achieve this we

perform a rotation as below.

Ĵ ′
x = Ĵx cos θR + Ĵz sin θR (4.72)

Ĵ ′
y = Ĵy (4.73)

Ĵ ′
z = −Ĵx sin θR + Ĵz cos θR. (4.74)

The rotation angle θR is determined from the condition

〈Ĵ ′
x〉 = 0, (4.75)

which is necessary to ensure that 〈Ĵ′〉 is along the z-axis as we already have

〈Ĵ ′
y〉 = 〈Ĵy〉 = 0. (4.76)

Thus, Eq. (4.75) yields

tan θR = −〈Ĵx〉
〈Ĵz〉

. (4.77)

It can be noted that under the above mentioned rotation the magnitude of the mean angular

momentum vector remains invariant, that is,

|〈Ĵ′〉| =

[

〈Ĵ ′
x〉2 + 〈Ĵ ′

y〉2 + 〈Ĵ ′
z〉2
]1/2

=

[

〈Ĵx〉2 cos2 θR + 〈Ĵz〉2 sin2 θR + 〈ĴxĴz + ĴzĴx〉 cos θR sin θR

+ 〈Ĵy〉2 + 〈Ĵx〉2 sin2 θR + 〈Ĵz〉2 cos2 θR − 〈ĴxĴz + ĴzĴx〉 cos θR sin θR

]1/2

=

[

〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2
]1/2

= |〈Ĵ〉|. (4.78)
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This is obvious as a rotation does not change the magnitude of a vector. We now proceed to

calculate the variances (∆J ′
x)

2 and (∆J ′
y)

2. As

(∆J ′
x)

2 = 〈Ĵ ′2
x 〉 − 〈Ĵ ′

x〉2, (4.79)

we, therefore, show the calculation of 〈Ĵ ′2
x 〉 and 〈Ĵ ′

x〉2 one after the other. From Eq. (4.72) we

get

Ĵ ′2
x = Ĵ2

x cos2 θR + Ĵ2
z sin2 θR + (ĴxĴz + ĴzĴx) sin θR cos θR. (4.80)

Therefore,

〈Ĵ ′2
x 〉 = 〈Ĵ2

x〉 cos2 θR + 〈Ĵ2
z 〉 sin2 θR + 〈ĴxĴz + ĴzĴx〉 sin θR cos θR. (4.81)

From Eq. (4.77) we have

cos θR = 〈Ĵz〉/
√

〈Ĵx〉2 + 〈Ĵz〉2 (4.82)

and

sin θR = −〈Ĵx〉/
√

〈Ĵx〉2 + 〈Ĵz〉2. (4.83)

As 〈Jy〉 = 0, we obtain

|〈Ĵ〉| =

√

〈Ĵx〉2 + 〈Ĵz〉2 (4.84)

and therefore,

cos θR = 〈Ĵz〉/
√

〈Ĵx〉2 + 〈Ĵz〉2

= 〈Ĵz〉/|〈Ĵ〉|. (4.85)

Similarly

sin θR = −〈Ĵx〉/
√

〈Ĵx〉2 + 〈Ĵz〉2

= −〈Ĵx〉/|〈Ĵ〉|. (4.86)

Using Eqs. (4.44), (4.55) and (4.85) we obtain

〈Ĵ2
x〉 cos2 θR =

[

1

2
+

1

(1 + χ2)2

{

χ2 + χ2 cos 4η +
1

2
(χ4 − 1) sin 4η

}

]

× 1

|〈Ĵ〉|2(1 + χ2)4

[

(1 − χ4) cos 4η + 2χ2 sin 4η

]2

, (4.87)
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which after simplification yields

〈Ĵ2
x〉 cos2 θR =

1

2|〈Ĵ〉|2(1 + χ2)4

[

4χ4 + (1 − 6χ4 + χ8) cos2 4η + 2χ2(1 − χ4) sin 8η

]

+
1

|〈Ĵ〉|2(1 + χ2)6

[

4χ6 − χ2(1 − 8χ4 + χ8) cos 4η

− 1

2
(1 − 11χ4 + 11χ8 − χ12) sin 4η + (χ2 − 6χ6 + χ10) cos2 4η

+ 2χ2(1 − 5χ4 + χ8) cos3 4η +
1

2
(1 − 15χ4 + 15χ8 − χ12) sin3 4η

+ 2χ4(1 − χ4) sin 8η

]

. (4.88)

Similarly Eqs. (4.39), (4.46) and (4.86) give

〈Ĵ2
z 〉 sin2 θR =

1 + χ4

(1 + χ2)2
× 4χ2

|〈Ĵ〉|2(1 + χ2)4

[

(1 + χ2) cos 2η − (1 − χ2) sin 2η
]2

, (4.89)

which after simplification yields

〈Ĵ2
z 〉 sin2 θR =

1

|〈Ĵ〉|2(1 + χ2)6

[

4χ2(1 + χ4)2 + 8χ4(1 + χ4) cos 4η

+ 4χ2(χ8 − 1) sin 4η

]

. (4.90)

Now the third term on the right hand side of Eq. (4.81) is 〈ĴxĴz + ĴzĴx〉 sin θR cos θR. We,

therefore, now show the calculation of the above quantity. Using Eqs. (4.67), (4.39), (4.44),

(4.85) and (4.86) we obtain

〈ĴxĴz + ĴzĴx〉 sin θR cos θR =
2χ

(1 + χ2)2

[

(1 − χ2) cos 2η + (1 + χ2) sin 2η

]

× 2χ

|〈Ĵ〉|(1 + χ2)2

[

(1 + χ2) cos 2η + (χ2 − 1) sin 2η

]

× 1

|〈Ĵ〉|(1 + χ2)2

[

(1 − χ4) cos 4η + 2χ2 sin 4η

]

. (4.91)

Simplifying we get

〈ĴxĴz + ĴzĴx〉 sin θR cos θR =
1

|〈Ĵ〉|2(1 + χ2)6

[

16χ6 + 4χ2(1 − 6χ4 + χ8) cos2 4η

+ 8χ4(1 − χ4) sin 8η

]

. (4.92)
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We now add the expressions of 〈Ĵ2
x〉 cos2 θR, 〈Ĵ2

z 〉 sin2 θR and 〈ĴxĴz + ĴzĴx〉 sin θR cos θR and

obtain the expression of (∆J ′
x)

2 which after simplification has the form

(∆Jx′)2 =
1

|〈Ĵ〉|2

[

1

2(1 + χ2)4

{

(χ8 − 2χ4 + 1) cos2(4η) −

2χ2(χ4 − 1) sin(8η) + 4χ4 sin2(4η)

}

+

1

(1 + χ2)6

{

(3χ10 − 10χ6 + 3χ2) cos3(4η) −

3(χ10 − 2χ6 + χ2) cos2(4η) − 2(χ10 − 4χ8 −

4χ6 − 4χ4 + χ2) cos(4η) − 1

2
(χ12 − 15χ8 +

15χ4 − 1) sin3(4η) − 12χ6 sin2(4η) +
1

2
(χ12 +

8χ10 − 11χ8 + 11χ4 − 8χ2 − 1) sin(4η) + 6χ4 ×

(χ4 − 1) sin(8η) + 4χ10 + 8χ6 + 4χ2

}]

. (4.93)

The presence of |〈Ĵ〉|2 in the denominator of the above equation is due to the expression of cos θR

and sin θR as given in Eqs. (4.85) and (4.86) respectively.

To calculate ∆J ′
y
2 we note from Eq. (4.73) that Ĵ ′

y = Ĵy and hence we have,

(∆J ′
y)

2 = 〈Ĵ2
y 〉 − 〈Ĵy〉2. (4.94)

As 〈Ĵy〉 = 0 therefore, we have

(∆J ′
y)

2 = 〈Ĵ2
y 〉. (4.95)

Using Eqs. (4.58) and (4.94) we get,

(∆J ′
y)

2 =
1

2

[

1 +
1

(1 + χ2)2

{

2χ2(1 − cos(4η))

+ (1 − χ4) sin(4η)

}]

. (4.96)

To derive the expression of |〈Ĵ〉|2 we use Eqs. (4.39), (4.42) and (4.44) and get,

|〈Ĵ〉|2 = 〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2

=

[

2χ

(1 + χ2)2

{

(1 + χ2) cos 2η − (1 − χ2) sin 2η
}

]2

+

[

1

(1 + χ2)2

{

(1 − χ4) cos 4η + 2χ2 sin 4η
}

]2

, (4.97)
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which after simplification yields,

|〈Ĵ〉|2 =
1

(1 + χ2)4

[

4χ2

{

1 + χ4 + 2χ2 cos(4η) − (1 − χ4) sin(4η)

}

+ (1 − χ4)2 cos2(4η) + 4χ4 sin2(4η) − 2χ2(χ4 − 1) sin(8η)

]

. (4.98)

We can verify that for η = 0 the results reduce to those for an atomic coherent state.
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Figure 4.1: Variation of Sx and Sy with respect to η = ζt in units of π. Sx and Sy are plotted on

the vertical axis and ζt/π is plotted on the horizontal axis. The solid and broken lines represent Sx and

Sy respectively. The black and red curves are for θ = 0(χ = 0) and θ = π/2(χ = 1) respectively. Note

that for θ = π/2, curves are same as for θ = 0 but the Sx and Sy are interchanged.

To visualize the amount of squeezing for this system we define two parameters

Sx =

√

2

|〈Ĵ〉|
∆Jx

′ (4.99)

and

Sy =

√

2

|〈Ĵ〉|
∆Jy

′ (4.100)

and plot these with respect to η = ζt in Figure 4.1. In this figure Sx and Sy are plotted

numerically for θ = 0 and θ = π/2 where

χ = tan(θ/2) (4.101)

as discussed in Chapter 1.
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We notice that both Sx and Sy goes much below 1 in alternate fashion implying squeezing in

the system. We observe from Eqs. (4.93) and (4.96) that the arguments of all sine and cosine

functions appearing there are in the form of 4η and 8η. Therefore, the variances repeat themselve

with a period of η = π
2

and they return to their initial condition, that is a coherent state, for

η = nπ
2
, with n as an integer.

4.3. System With More Than Two Atoms (j > 1)

As we increase the number of atoms in the system from two to three and so on, the analytical

calculations of the moments and correlations get more and more cumbersome and for a general

value of j the problem becomes too complicated to study it analytically. However, we can tackle

the problem somewhat numerically.

We are concerned with the state

|SSS〉 = Ŝ(η)|j, χ〉 (4.102)

with j > 1 and study it’s squeezing aspect. For that we need to calculate various moments and

correlations over this state. Now quantum mechanical average of any operator say Ô over the

state |SSS〉, is given by

0 10 20 30 40 50
J

0

0.5

1

1.5

2

S

θ=π/4, φ=π/4
θ=π/3, φ=π/4
θ=π/2, φ=π/4

ζt=π/20

Figure 4.2: Variation of Sy as a function of j. Sy is plotted on the vertical axis and j is plotted on

the horizontal axis. Sy oscillates with j below the line Sy = 1 indicating squeezing in the y′ quadrature.

Note that there is no squeezing in the other quadrature for such interaction times.
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Figure 4.3: Variation of Sx as a funtion of ζt/π and for χ = 0. Sx and ζt/π are plotted on the

vertical and the horizontal axes respectively. Sx goes below 1 indicating squeezing in x′ quadrature.

The solid and dotted lines are for j = 4 and 15 respectively.

〈Ô〉 = 〈SSS|Ô|SSS〉 =

j
∑

m′=−j

j
∑

m′′=−j

〈SSS|j,m′〉 ×

〈j,m′|Ô|j,m′′〉〈j,m′′|SSS〉. (4.103)

The inner product 〈j,m|SSS〉 is given by

〈j,m|SSS〉 = 〈j,m|Ŝ(η)|j, χ〉
=

∑

k

〈j,m|SSSk〉〈SSSk|j, χ〉e−iλkt (4.104)

where we have used

Ŝ(η) = e−iĤt (4.105)

with Ĥ given by Eq. (4.1). The |SSSk〉 are the eigenvectors of Ĥ corresponding to eigenvalue

λk.

In Figure 4.2 we show the variation of Sy with j for short interaction time, that is, η = ζt =

π/20. The interesting feature is that, for θ = π/2(χ = 1), Sy oscillates just below the line Sy = 1

indicating squeezing in the y′ quadrature for all values of j. Thus the operator Ŝ(η), operating

on |j, χ〉 produces squeezing of a large number of atoms which are prepared initially in a coherent

state |j, χ〉.
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The distribution function for the initial condition θ = π/2(χ = 1) takes the form

P (j,m) = |〈j,m|j, χ = 1〉| =
1

22j

(2j)!

(j +m)!(j −m)!
. (4.106)

It can be easily shown that P (j,m) peaks at m = 0 by using the expression of digamma

function, the derivative of the factorial function. The state |j,m = 0〉 has the property of

maximum correlation among individual spins [2] which is exploited by the operator Ŝspin to

squeeze out noise displayed in Figure 1. This type of behaviour has also been noticed in the

spin squeezing properties of the eigenstate of a pseudo-Hermitian operator discussed in Chapter

2. This interesting property persists for long interaction time also. The only difference is that,

for this case Sy oscillates more vigorously as a function of j, but, still below the line Sy = 1,

implying squeezing.

In Figure 4.3 we show the variation of Sx as a function of ζt/π. We observe that Sx goes

below 1, indicating squeezing in x′ quadrature.

4.4. Possibilities of Physical Realization of the Hamiltoian

Ĥspin(g1) = g1

(

Ĵ2
+ − Ĵ2

−

)

The quadratic forms of spin operators have been discussed in the literature for quite sometime.

A widely known Hamiltonian studied in nuclear physics is the Lipkin-Meshkov and Glick (LMG)

Hamiltonian [3] given as

ĤLMG = G1(Ĵ
2
+ + Ĵ2

−) +G2(Ĵ+Ĵ− + Ĵ−Ĵ+) , (4.107)

where G1 and G2 are the coupling constants representing the two body interactions. We see

that by a suitable choice of the constants G1 and G2 the LMG-Hamiltonian is very close to the

generic spin squeezing Hamiltonian Ĥspin for an atomic system.

The Ĥspin also appears in the Hamiltonian of a complex magnetic molecule in a static magnetic

field [4, 5].

4.5. Conclusion

We have shown theoretically the squeezing of an atomic coherent state by using a Hamiltonian

which is quadratic in spin operators. We took the squeezing operator as Ŝ(η) = eηĴ2
+−η⋆Ĵ2

− to keep

analogy with the squeezing operator for the electromagnetic field, that is Ŝ(ζ) = e
1

2
(ζâ2−ζ⋆â†2).

We note that by choosing η as real the operator Ŝ(η) becomes Ŝ(η) = eη(Ĵ2
+−Ĵ2

−). We performed

our study on a two atom (bipartite) system analytically. We operated Ŝ(η) (with η real) on
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the atomic coherent state for j = 1 and calculated the relevant moments and correlations. The

presence of correlation among the individual atoms is necessary for the existence of squeezing [6].

We found that one of the correlations is non-zero for the bipartite system and due to that the

system was found in a squeezed state. The case of N atoms was dealt numerically and in that

case also we observed squeezing by significant amount.
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5. Squeezing of an Atomic Coherent

State with the Hamiltonain Quadratic

in Population Inversion Operator

5.1. Introduction

In this chapter we present our work on squeezing of an atomic coherent state when it evolves under

the action of a Hamiltonian proportional to the quadratic of the population inversion operator Ĵz

that is,

Ĥ ∝ Ĵ2
z . (5.1)

This is one of the generic spin squeezing Hamiltonians developed in Chapter 3. Here, in particular,

we shall consider Ĥ as the effective Hamiltonian Ĥeff governing the interaction of two level atoms

with the radiation field in a dispersive cavity where Ĥeff has the form

Ĥeff = ∆0

(

Ĵ2 − Ĵ2
z

)

. (5.2)

The physical significance of Ĥeff , in detail, has been discussed in section 5.3. Since Ĵ2 is invariant

under rotation and Ĵ2
z is related to the other two quadratic forms of spin operators, namely, Ĵ2

x

and Ĵ2
y by rotations, as discussed in Chapter 3, section 3.2, the study of the dynamics of Ĥeff

alongwith the investigation of Chapter 4 exhaust the quadratic forms of spin operators for the

production of spin squeezing.

5.2. Squeezing of an Atomic Coherent State

5.2.1. The Initial Condition

We assume a system of N two-level atoms put in a coherent state before [4] they enter the cavity.

The state vector of the atomic system is given as

|j, χ〉 =
1

(1 + |χ|2)j

2j
∑

n=0

√

2jCnχ
n|j, j − n〉. (5.3)
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This state has already been introduced in Section 1.3 of Chapter 1 and is called an atomic

coherent state. If we put

χ = eiφ tan(θ/2) (5.4)

then we know from Section 1.3 of Chapter 1 that

〈j, χ|Ĵx|j, χ〉 = j sin θ cos φ, (5.5)

〈j, χ|Ĵy|j, χ〉 = j sin θ sin φ (5.6)

and

〈j, χ|Ĵz|j, χ〉 = j cos θ. (5.7)

θ and φ are the polar and azimuthal angles respectively, made by the mean angular momentum

vector

〈Ĵ〉 = 〈Ĵx〉i + 〈Ĵy〉j + 〈Ĵz〉k (5.8)

with the right handed rectangular cartesian coordinate axes, where i, j and k are the unit vectors

along the x, y and z axes respectively. The number of atoms N is related to j as j = N
2
. For

χ = 0 we see that the state vector |j, χ〉 reduces to |j,+j〉. This means that for χ = 0 all the

atoms are in the upper state |j,+j〉. For the sake of simplicity we assume φ to be zero. We

achieve the state |θ, 0〉 first by sending the atoms in their upper states through an auxillary cavity.

The duration of the atom field interaction decides the angle θ. These atoms then are made to

enter the cavity where their evolution is governed by the Hamiltonian proportional to Ô in Eq.

(5.2).

5.2.2. Derivation of Moments and Correlation Functions

We now investigate the squeezing aspect of the resulting state when the atomic coherent state

represented in Eq. (5.3) evolves with respect to time under the action of the Hamiltonian Ĥeff .

We write the time evolved resultant state ( with ~ = 1 ) as

|j, χ, t〉 = e−iĤeff t|j, χ〉. (5.9)

We first calculate the expectation values of the pseudo angular momentum or spin operators

and their correlations over the state |j, χ, t〉. Since

[

Ĥeff , Ĵ
2
z

]

= 0 =
[

Ĥeff , Ĵz

]

(5.10)

the dynamical variables corresponding to the operators Ĵz and Ĵ2
z are constants of motion. That

is

〈j, χ, t|Ĵz|j, χ, t〉 = 〈j, χ|eiĤeff tĴze
−iĤeff t|j, χ〉 = 〈j, χ|Ĵz|j, χ〉 (5.11)
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and

〈j, χ, t|Ĵ2
z |j, χ, t〉 = 〈j, χ|eiĤeff tĴ2

z e
−iĤeff t|j, χ〉 = 〈j, χ|Ĵ2

z |j, χ〉. (5.12)

We have already shown the calculation of 〈Ĵz〉 and 〈Ĵ2
z 〉 over the state |j, χ〉 in Chapter1 which

are

〈Ĵz〉 = j cos θ (5.13)

and

〈Ĵ2
z 〉 = j2 cos2 θ +

1

2
j sin2 θ. (5.14)

We now proceed to calculate the remaining moments and correlations. We know from Chapter

4 that

Ĵx =
1

2

(

Ĵ+ + Ĵ−

)

, (5.15)

Ĵy =
1

2i

(

Ĵ+ − Ĵ−

)

, (5.16)

Ĵ2
x =

1

4

(

Ĵ2
+ + Ĵ2

−

)

+
1

2

(

Ĵ2 − Ĵ2
z

)

, (5.17)

Ĵ2
y = −1

4

(

Ĵ2
+ + Ĵ2

−

)

+
1

2

(

Ĵ2 − Ĵ2
z

)

, (5.18)

ĴxĴy + ĴyĴx =
1

2i

(

Ĵ2
+ − Ĵ2

−

)

, (5.19)

ĴxĴz + ĴzĴx =
1

2i

[

Ĵ+Ĵz + ĴzĴ+ + Ĵ−Ĵz + ĴzĴ−

]

, (5.20)

and

ĴyĴz + ĴzĴy =
1

2i

[

Ĵ+Ĵz + ĴzĴ+ − Ĵ−Ĵz − ĴzĴ−

]

. (5.21)

Therefore,

〈Ĵx〉 = Re〈Ĵ+〉, (5.22)

〈Ĵy〉 = Im〈Ĵ+〉, (5.23)

〈Ĵ2
x〉 =

1

2

[

Re〈Ĵ2
+〉 + 〈Ĵ2〉 − 〈Ĵ2

z 〉
]

, (5.24)

〈Ĵ2
y 〉 =

1

2

[

−Re〈Ĵ2
+〉 + 〈Ĵ2〉 − 〈Ĵ2

z 〉
]

, (5.25)

〈ĴxĴy + ĴyĴx〉 = Im〈Ĵ2
+〉, (5.26)

〈ĴxĴz + ĴzĴx〉 = Re〈Ĵ+Ĵz + ĴzĴ+〉 (5.27)
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and

〈ĴyĴz + ĴzĴy〉 = Im〈Ĵ+Ĵz + ĴzĴ+〉. (5.28)

We now show the calculation of 〈Ĵ+〉 over the state given in Eq. (5.9).

〈j, χ, t|Ĵ+|j, χ, t〉 = 〈j, χ|eiĤeff tĴ+e
−iĤeff t|j, χ〉. (5.29)

Using Campbell-Baker-Hausdorff lemma [see Apendix-I] it can be shown that

eiĤeff tĴ+e
−iĤeff t = Ĵ+e

−i∆0(2Ĵz+1)t = 〈Ĵ+(t)〉. (5.30)

We can also calculate the above quantity by shifting to Heisenberg picture of quantum mechanics

in which the operators are time dependent whereas the states are not. According to Heisenberg’s

equation of motion we know that

d

dt
Ĵ+(t) = i[Ĥeff , Ĵ+(t)] = −i∆0Ĵ+(t)[2Ĵz + 1]. (5.31)

Therefore,

Ĵ+(t) = Ĵ+(0)e−i∆0(2Ĵz+1)t. (5.32)

Hence,

〈Ĵ+(t)〉 = 〈j, χ|Ĵ+e
−i∆0(2Ĵz+1)t|j, χ〉

=
1

(1 + |χ|2)2j

2j
∑

m,n=0

√

2jCn
2jCmχ

⋆mχn〈j, j −m|Ĵ+e
−i∆0(2Ĵz+1)t|j, j − n〉

=
χ

(1 + |χ|2)2j e
−i∆0(2j+1)t

2j
∑

n=0

2jCn(|χ|2)n−1
ne2i∆0nt

=
χ

(1 + |χ|2)2j e
−i∆0(2j+1)t d

d|χ|2
2j
∑

n=0

2jCn|χ|2ne2i∆0nt

=
2jχ

(1 + |χ|2)e
−i∆0(2j−1)t. (5.33)

Using Eq. (5.4) with φ = 0 and simplifying, we obtain

〈Ĵ+(t)〉 = j sin θ

[

cos4(θ/2) + sin4(θ/2) +
1

2
sin2 θ cos 2∆0t

]j− 1

2

× ei[(2j−1)Θ1(t)−∆0(2j−1)t] (5.34)

where

tanΘ1(t) =
sin2(θ/2) sin 2∆0t

cos2(θ/2) + sin2(θ/2) cos 2∆0t
. (5.35)
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After obtaining 〈Ĵ+(t)〉, we now show the calculation of 〈Ĵ2
+(t)〉. Using Heisenberg’s equation

of motion we have,
d

dt
Ĵ2

+(t) = −4i∆0Ĵ
2
+(t)

[

1 + Ĵz(0)
]

(5.36)

implying,

Ĵ2
+(t) = Ĵ2

+(0)e−4i∆0(Ĵz+1)t. (5.37)

Thus, using Eq. (5.3) we get,

〈j, χ|Ĵ2
+(t)|j, χ〉 = 〈j, χ|Ĵ2

+e
−4i∆0(Ĵz+1)t|j, χ〉

=
1

(

1 + |χ|2
)2j

2j
∑

m,n=0

√

2jCn
2jCmχ

⋆mχn

× 〈j, j −m|Ĵ2
+e

−i∆0(2Ĵz+1)t|j, j − n〉

=
χ2

(

1 + |χ|2
)2j e

−4i∆0(j+1)t

2j
∑

n=0

2jCnn(n− 1)
(

|χ|2
)n−2

e4in∆0t

=
χ2

(

1 + |χ|2
)2j e

−4i∆0(j+1)t d2

d|χ|2
2j
∑

n=0

2jCn|χ|2ne4in∆0t

=
2j(2j − 1)χ2

(

1 + |χ|2
)2j e

−4i∆0(j−1)t
(

1 + |χ|2e4i∆0t
)2j−2

. (5.38)

Using Eq. (5.4) with φ = 0 and simplifying, we obtain

〈Ĵ2
+(t)〉 =

1

2
j(2j − 1) sin2 θ

[

cos4(θ/2) + sin4(θ/2) +
1

2
sin2 θ cos 4∆0t

]j−1

× ei[(2j−2)Θ2(t)−4∆0(j−1)t] (5.39)

where,

tanΘ2(t) =
sin2(θ/2) sin 4∆0t

cos2(θ/2) + sin2(θ/2) cos 4∆0t
. (5.40)

We now show the calculation of 〈Ĵ+(t)Ĵz(t)〉 over |j, χ〉. Using Heisenberg’s equation of motion

we have,
d

dt

[

Ĵ+(t)Ĵz(t)

]

= −i∆0Ĵ+(t)Ĵz(t)(1 + 2Ĵz(0)). (5.41)

Hence,

Ĵ+(t)Ĵz(t) = Ĵ+(0)Ĵz(0)e−i∆0(2Ĵz+1)t. (5.42)
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Thus, using Eq. (5.3) we get,

〈j, χ|Ĵ+(t)Ĵz(t)|j, χ〉 = 〈j, χ|Ĵ+Ĵze
−i∆0(2Ĵz+1)t|j, χ〉

=
1

(

1 + |χ|2
)2j

2j
∑

n=0

2j
∑

m=0

√

2jCn
2jCmχ

⋆mχn

× 〈j, j −m|Ĵ+Ĵze
−i∆0(2Ĵz+1)t|j, j − n〉

= χ
e−i∆0(2j+1)t

(

1 + |χ|2
)2j

2j
∑

n=0

2jCn(jn− n2)(|χ|2)n−1
e2i∆0nt

= χ
e−i∆0(2j+1)t

(

1 + |χ|2
)2j

[

j
d

d|χ|2
2j
∑

n=0

2jCn|χ|2ne2i∆0nt

− d

d|χ|2
{

|χ|2 d

d|χ|2
2j
∑

n=0

2jCn|χ|2ne2i∆0nt

}

]

= χ
e−i∆0(2j+1)t

(

1 + |χ|2
)2j

[

j
d

d|χ|2
(

1 + |χ|2e2i∆0t

)2j

− d

d|χ|2
{

|χ|2 d

d|χ|2
(

1 + |χ|2e2i∆0t

)2j}
]

= 2jχ
e−i∆0(2j−1)t

(

1 + |χ|2
)2j

[

j
(

1 − |χ|2e2i∆0t
)

− 1

]

×
(

1 + |χ|2e2i∆0t
)(2j−2)

. (5.43)

We now show the calculation of 〈Ĵz(t)Ĵ+(t)〉 over the state given in Eq. (5.3). We know that

[

Ĵz, Ĵ+

]

= Ĵ+. (5.44)

Since in going from Schrödinger to Heisenberg picture the commutation relations remain preserved

therefore, we have

〈Ĵz(t)Ĵ+(t)〉 = 〈Ĵ+(t)Ĵz(t)〉 + 〈Ĵ+(t)〉. (5.45)

Using Eqs. (5.33) and (5.43) and simplifying we obtain,

〈Ĵz(t)Ĵ+(t)〉 = χ
e−i∆0(2j−1)t

(1 + |χ|2)2j

[

2j2(1 − |χ|2e2i∆0t) + 2j|χ|2e2i∆0t

]

×
(

1 + |χ|2e2i∆0t

)(2j−2)

. (5.46)
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To calculate 〈Ĵ+(t)Ĵz(t) + Ĵz(t)Ĵ+(t)〉 we add the two Eqs. (5.43) and (5.46) and obtain,

〈Ĵ+(t)Ĵz(t) + Ĵz(t)Ĵ+(t)〉 = 2j(2j − 1)χ
e−i∆0(2j−1)t

(1 + |χ|2)2j

(

1 + |χ|2e2i∆0t

)(2j−2)

×
(

1 − |χ|2e2i∆0t

)

. (5.47)

Using Eq. (5.4) with φ = 0 and simplifying we obtain,

〈Ĵ+(t)Ĵz(t) + Ĵz(t)Ĵ+(t)〉 = j(2j − 1) sin θ

[

Λ1(t)

]j−1

×
[

(

cos2(θ/2) cos
{

(2j − 2)Θ1(t) − (2j − 1)∆0t
}

− sin2(θ/2) cos
{

(2j − 2)Θ1(t) − (2j − 3)∆0t
}

)

+ i

(

cos2(θ/2) sin
{

(2j − 2)Θ1(t) − (2j − 1)∆0t
}

− sin2(θ/2) sin
{

(2j − 2)Θ1(t) − (2j − 3)∆0t
}

)

]

(5.48)

where,

Λ1(t) = cos4(θ/2) + sin4(θ/2) +
1

2
sin2 θ cos 2∆0t. (5.49)

As in Eq. (5.10), Ĵ2 is a constant of motion. Hence, 〈Ĵ2〉 over the state given in Eq. (5.3) is

〈j, χ|Ĵ2|j, χ〉 =
1

(1 + |χ|2)2j

2j
∑

n=0

2j
∑

m=0

√

2jCn
2jCmχ

⋆mχn〈j, j −m|Ĵ2|j, j − n〉

=
j(j + 1)

(1 + |χ|2)2j

2j
∑

n=0

2jCn|χ|2n

= j(j + 1). (5.50)

Using Eqs. (5.22) and (5.34) we obtain,

〈Ĵx(t)〉 = j sin θ

[

cos4(θ/2) + sin4(θ/2) +
1

2
sin2 θ cos 2∆0t

](2j−1)/2

cos
[

(2j − 1)Θ1(t) − ∆0(2j − 1)t
]

. (5.51)

Using Eqs. (5.23) and (5.34) we have,

〈Ĵy(t)〉 = j sin θ

[

cos4(θ/2) + sin4(θ/2) +
1

2
sin2 θ cos 2∆0t

](2j−1)/2

sin
[

(2j − 1)Θ1(t) − ∆0(2j − 1)t
]

. (5.52)
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Using Eqs. (5.24), (5.14), (5.39) and (5.50) we get,

〈Ĵ2
x(t)〉 =

j

2
+

1

4
j(2j − 1) sin2 θ

[

1 + [Λ2(t)]
(j−1) cos 2[2∆0(j − 1)t− (j − 1)Θ2(t)]

]

. (5.53)

where

Λ2(t) = cos4(θ/2) + sin4(θ/2) +
1

2
sin2 θ cos 4∆0t. (5.54)

Using Eqs. (5.25), (5.14), (5.39) and (5.50) we get,

〈Ĵ2
y (t)〉 =

j

2
+

1

4
j(2j − 1) sin2 θ

[

1 − [Λ2(t)]
(j−1) cos 2[2∆0(j − 1)t− (j − 1)Θ2(t)]

]

. (5.55)

Using Eqs. (5.26) and (5.39) we obtain

〈ĴxĴy + ĴyĴx〉 =
1

2
j(2j − 1) sin2 θ

[

Λ2(t)
](j−1)

sin
[

(2j − 2)Θ2(t) − 4∆0(j − 1)t
]

. (5.56)

Using Eqs. (5.27) and (5.48) we obtain,

〈ĴxĴz + ĴzĴx〉 = j(2j − 1) sin θ
[

Λ1(t)
](j−1)

[

cos2(θ/2) cos

{

(2j − 2)Θ1(t) − (2j − 1)∆0t

}

− sin2(θ/2) cos

{

(2j − 2)Θ1(t) − (2j − 3)∆0t

}]

. (5.57)

Using Eqs. (5.28), (5.48) we obtain,

〈ĴyĴz + ĴzĴy〉 = j(2j − 1) sin θ
[

Λ1(t)
](j−1)

[

cos2(θ/2) sin

{

(2j − 2)Θ1(t) − (2j − 1)∆0t

}

− sin2(θ/2) sin

{

(2j − 2)Θ1(t) − (2j − 3)∆0t

}]

. (5.58)

These correlation functions are responsible for spin squeezing or squeezing of the atomic state

[2].

5.2.3. Analysis of the Amount of Squeezing for the State |j, χ, t〉
To analyse the squeezing aspect of the state represented in Eq. (5.9) we perform a rotation of

the coordinate frame {x, y, z} to a new frame {x′, y′, z′} so that the mean angular momentum

vector 〈Ĵ〉 is along the z′ axis. The magnitude of the mean angular momentum vector for this

system is

|〈Ĵ〉| =

√

〈Ĵx〉
2
+ 〈Ĵy〉

2
+ 〈Ĵz〉

2

= j
√

[Λ1(t)]2j−1 sin2 θ + cos2 θ. (5.59)
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It is easy to verify that for j = 1
2

i.e. for a single two-level atom all the three correlations vanish,

implying that there is no squeezing. We now look for the squeezing aspect for j > 1. We first

aim at the variance in the y′ quadrature. It has the form

〈∆J ′
y
2〉 =

j

2
+
j

4
(2j − 1) sin2 θ

[

1 −
(

1 − 1

2
sin2 θ(1 − cos 4∆0t)

)j−1

cos 2
{

(2j − 1)Θ1(t) − (j − 1)Θ2(t) − ∆0t
}

]

. (5.60)

We notice that

〈∆J ′
y
2〉 > j

2
. (5.61)

We define a quantity Sy as

Sy =

√

2〈∆J2
y′〉

|〈Ĵ〉|
. (5.62)

If Sy is less than one, we say that the atomic system has squeezing in the y′ quadrature. Now

from Eq. (5.59) we can see that the maximum value of |〈J〉| is j and thus from Eq. (5.61) we

can conclude that

Sy > 1. (5.63)

Thus the y′ quadrature is never squeezed.

We now look for the squeezing aspect in x′ quadrature. We define

Sx =

√

2〈∆J2
x′〉

|〈Ĵ〉|
. (5.64)

If Sx is less than 1, we say that the system has squeezing in the x′ quadrature. We plot Sx in

Figure 5.1.

We notice that for θ = π/16, representing about 2% of the atoms in their upper states, there is

about 21% squeezing [ when Sx = 0.79, we say that there is 21% squeezing] when the interaction

time is set at ∆0t = π/2. We also notice that an atomic system with 140 atoms can be squeezed

at this interaction time. The maximum squeezing takes place for N = 26. As we deviate from

this interaction time, the degree of squeezing and also the number of atoms that can be squeezed

are reduced. For ∆0t = 9π
16

, the squeezing reduces to 15% and for ∆0t = 5π
16

, it reduces to 10%.

As we deviate further from ∆0t = π
2
, the squeezing reduces more and finally vanishes at ∆0t = π.

The degree of squeezing also decreases as we increase the number of atoms in their upper

states, that is, as we increase θ. For θ = π
2
, that is, when we have equal number of atoms in the

upper and lower levels, we have 〈Ĵz〉 = 0. For θ = π
2

the variance in the x′ quadrature reduces

to

〈∆J ′
x
2〉 =

j

2
= 〈Ĵ2

z 〉. (5.65)
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Figure 5.1: Degree of squeezing Sx as a function of j ≥ 2 for θ = π/16. Here in the figure the

quantity X on the vertical axis is Sx and the quantity s on the horizontal axis is j. The dimensionless

interaction time ∆0t = π/2, 9π/16, 5π/16 for the full, broken and dotted curves, respectively. Note

that Sx < 1 indicates squeezing.

Since at this value of θ

|〈Ĵ〉| = j cos(2j−1) ∆0t (5.66)

we have,

S2
x =

1

cos(2j−1) ∆ot
> 1 (5.67)

implying that the system does not show any squeezing for θ = π
2
. This is in contrast to the

results in Ref. [2] where the squeezing has been studied in the y′ − z′ plane, whereas we have

studied it in the x′ − y′ plane.

We have studied the squeezing aspect of a two-atom or a bipartite system for which j = 1 as

it reveals interesting properties. We set ∆0t = π/2 as the maximum squeezing or lowest noise

level is obtained for this interacion time for all values of j. We observe from Eqs. (5.51) to

(5.58) that the moments and correlations take very simple form as

〈Ĵx(t)〉 = −1

2
sin 2θ, (5.68)

〈Ĵy(t)〉 = 0, (5.69)

〈Ĵz(t)〉 = − cos θ, (5.70)

〈Ĵ2
x(t)〉 =

1

2
, (5.71)

〈Ĵ2
y (t)〉 =

1

2
(1 + sin2 θ) (5.72)

〈Ĵ2
z (t)〉 = 1 − 1

2
sin2 θ (5.73)
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and

〈ĴxĴz + ĴzĴx〉 = sin θ. (5.74)

The other two correlations are zero at ∆0t = π
2
. With these values the expression of Sx for

0 < θ < π
2

has the form

Sx =

(

cos θ√
1 + sin2 θ

)1/2

< 1. (5.75)

We observe that there is sufficient squeezing in the x′ quadrature. and it increases with increase

in θ. As θ → π
2

the squeezing approaches 100%. This behaviour is just opposite to that of a

multipartite system that is for j > 1. However, we may notice from Eq. (5.59), that |〈Ĵ〉| = 0 at

θ = ∆0t = π
2
, implying that squeezing is not defined at these values. In the interval π

2
< θ < π,

Sx has the form

Sx =

( − cos θ√
1 + sin2 θ

)1/2

< 1 (5.76)

which implies squeezing. Thus squeezing increases as θ increases from 0 towards π
2

and decreases

as θ increases from π
2

towards π. We can interpret this result from the expression of the only

non-zero correlation given Eq. (5.74). We observe that as θ increases from 0 the correlation

factor also increases and hence the squeezing also increases. The correlation decreases when θ

increases from π
2

to π and thus it decreases the squeezing.

5.3. Physical Significance of the Hamiltonian Ĥeff

We now show that the dynamics of a system of N two-level atoms interacting with the single

mode of a cavity having high quality factor Q and at thermal equilibrium is governed by the

effective Hamiltonian Ĥeff as given in Eq. (5.2). The cavity quality factor is related to cavity

bandwidth κ by κ = 1
2Q

and then the cavity photon lifetime is represented by 1
2κ

. The average

number of thermal photons n̄th present inside the cavity is related to its temperature T by the

relation

n̄th =
1

e~ωc/kBT − 1
, (5.77)

where ωc is the frequency of the single mode cavity. We consider a highly detuned cavity, that is,

ωc is very large compared to the atomic transition frequency ωa which makes the cavity dispersive

in nature. Since we are dealing with a high-Q cavity (small k), the system easily satisfies δ >> k

where δ = ωc − ωa. Further, if |iδ + k| >> g
√
N , where g is atom-field coupling constant, is

satisfied, the field remains almost stationary in the time scale of changes in atomic observables.

Under this condition, the time evolution of atomic density matrix can be written as [1]
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dρ̂a

dt
=

g2

k2 + δ2

[

− iδ
{

[Ĵ+Ĵ−, ρ̂a] + 2n[Ĵz, ρ̂a]
}

+k
{

(n+ 1)(2Ĵ−ρ̂aĴ+ − Ĵ+Ĵ−ρ̂a − ρ̂aĴ+Ĵ−)

+n(2Ĵ+ρ̂aĴ− − Ĵ−Ĵ+ρ̂a − ρ̂aĴ−Ĵ+)
}

]

(5.78)

the details are given in the Apendix V. Since δ >> k, we notice in Eq. (5.78) that the damping

terms contribute negligibly to the atomic dynamics. This reduces the equation of motion to

dρ̂a

dt
= −i∆0

[

Ĵ+Ĵ− + 2n̄Ĵz , ρ̂a

]

. (5.79)

As

Ĵ2 =
1

2

(

Ĵ+Ĵ− + Ĵ−Ĵ+

)

+ Ĵ2
z , (5.80)

the effective Hamiltonian describing the time evolution of the system is

Ĥeff = ∆0Ĵ+Ĵ− + ∆1Ĵz = ∆0(Ĵ
2 − Ĵ2

z ) + (∆1 + ∆0)Ĵz (5.81)

where

∆0 =
g2δ

k2 + δ2
(5.82)

and

∆1 = 2n̄th∆0. (5.83)

In the effective Hamiltonian the cavity temperature appears in the term linear in Ĵz. We know

that such terms produces simply a rotation which does not change the final results. Thus we

drop the terms linear in atomic operators making the effective Hamiltonian

Ĥeff = ∆0(Ĵ
2 − Ĵ2

z ). (5.84)

Thus we find that the Hamiltonian is a function of Ĵ2
z [2]. In this chapter, in addition to probing

deeper into the spin squeezing dynamics of Ĥeff , we have shown that, when the system is in a

bipartite state (N = 2), the time evolution of the interaction has quite interesting properties. It

is interesting to note that Ĥeff is a special case of the so called Lipkin-Meshkov-Glick (LMG)

Hamiltonian for a many-body fermionic system [3].

ĤLMG = G1(Ĵ
2
+ + Ĵ2

−) +G2(Ĵ+Ĵ− + Ĵ−Ĵ+) (5.85)

where G1 and G2 are the parameters specifying interaction strengths there. They are quite

different from the interactions we consider in the thesis. What we are pointing out is the degree

of similarity between Ĥeff and ĤLMG.
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5.4. Conclusion

We have shown that a system of atoms, initially in a coherent state, can be squeezed by an

Hamiltonian proportional to Ĵ2
z . Also, this operator can represent atom-field interactions in

cavity QED as discussed above. It may be noted that this operator was first considered in Ref.

[2] to establish the phenomenon of spin squeezing. We, however, has examined the dynamics in

detail.

The LMG-Hamiltonian [3] in Eq. (5.85) has this form if we set G1 = 0 there. Thus the system,

described by the LMG Hamiltonian and if the values of G2 is set to the numerical values of ∆0,

will display spin squeezing properties.
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6. Conclusion

In our thesis we dealt with the squeezing aspects of two level atomic systems. We have analysed

the subject from various perspectives to get a deeper insight. In Chapter 1, containing the

introduction to the thesis, we developed the necessary basic concepts and preliminaries for the

subject. We first discussed the coherent states and squeezed states of electromagnetic radiation

field as these ideas were first developed in that context. We then introduced a two level atomic

system and discussed its coherent states and squeezed states subsequently. A brief review of the

work done so far has been given there. We presented our work in Chapter 2 to Chapter 5.

In Chapter 2 we considered an atomic state, denoted as |Ψm〉, representing a two level atomic

system interacting with the squeezed vacuum state of the radiation field [1]. This state is an

eigenstate of a non-Hermitian operator, termed in our thesis as Λ̂, with real eigenvalues [2]. We

showed the underlying mathematical reason for the reality of the eigenvalue spectrum of that

operator by introducing the notion of pseudo-Hermiticity. The necessary condition for a non-

Hermitian operator with a complete set of biorthonormal eigenvectors to have a real eigenvalue

spectrum is that the operator must be pseudo-Hermitian [3]. A pseudo-Hermitian operator with a

complete set of biorthonormal eigenvectors possesses either real eigenvalues or complex conjugate

pair of eigenvalues. The condition under which all the eigenvalues are real has been shown in

Reference [4] and also discussed in Apendix-III. We proved that the operator Λ̂ is pseudo-Hermitian

and satisfies the necessary condition to have real eigenvalues and thus connected the recently

developed ideas of pseudo-Hermiticity with a real physical example from the domain of quantum

optics.

We analysed the squeezing aspect of the state |Ψm〉 by calculating the relevant moments,

correlations and variances of the spin operators over this state and observed a significant amount

of squeezing. In the course of our study we introduced reduced Wigner d-matrix elements [5]

with their analytic continuation to imaginary angles, as this makes the relevant calculations much

simple.

We also discussed the squeezing aspect of the biorthonormal state |Φm〉 of |Ψm〉 and concluded

that the state |Φm〉 has the same squeezing properties as that of |Ψm〉.
After studying the squeezing properties of the eigenstate of a pseudo-Hermitian operator we

tried to develop a generic but simplest squeezing operator to produce squeezing in two level atomic

systems put initially in coherent state. We know that a Hamiltonian nonlinear in spin operators
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when generates time evolution on an atomic coherent state, produces squeezing in the resultant

state. Many such Hamiltonians can be constructed which serve this purpose, however, it is better

to construct a generic Hamiltonian which reveals the subject from general aspect. In Chapter 3

we developed such a Hamiltonian keeping analogy with the case of electromagnetic radiation field.

We took all possible Hermitian combinations of spin operators to form Hamiltonians with lowest

power of nonlinearity, that is, the quadratics and got six such entities. Those six Hamiltonians

can be divided into two groups each containing three, such that the Hamiltonians of the same

group are connected to each other by rotations of the coordinate axes. Therefore, we argued that

it is not needed to study the squeezing properties of each of the six Hamiltonians individually but,

it is sufficient to study the squeezing properties of only one from each group. The knowledge

gained from the study made on any one Hamiltonian from each group can be used to derive the

squeezing properties of the other group members by using the rotations of the coordinate axes.

Therefore, we took the generic squeezing Hamiltonians as

Ĥspin = g1(ĴxĴy + ĴyĴx) (6.1)

and

Ĥ ′
spin = g2Ĵ

2
z , (6.2)

with g1 and g2 as real parameters. We thus constructed the generic spin squeezing operators as

Ŝspin = exp(−iĤspint/~) = exp
[

2iγ(ĴxĴy + ĴyĴx)
]

(6.3)

and

Ŝ ′
spin = exp(−iĤ ′

spint/~) = exp
[

− iβĴ2
z

]

, (6.4)

where γ = −g1t/(2~) and β = g2t/~.

After constructing the generic spin squeezing operators Ŝspin and Ŝ ′
spin we study their squeezing

properties when they act on an atomic coherent state. In Chapter 4 we study the spin squeezing

dynamics produced when the operator Ŝspin acts on an atomic coherent state. We studied the

case in two parts, one when Ŝspin acts on a two-atom system and the other when the operator

acts on a system of more than two atoms. The case of two-atom system was studied analytically.

We calculated the relevant moments, correlations and the variances of the spin operators over

the state produced when Ŝspin acts on a two atom coherent state. We graphically showed the

variation of squeezing in two quadratures x and y and observed significant amount of squeezing

in both the quadratures in alternate fashion.

The case of more than two atoms was dealt numerically as it is difficult to make analytical

study. The striking feature in this case is that for short interaction time the squeezing parameter,

denoted as Sy oscillates just below the line Sy = 1 indicating spin squeezing for all values of

j. Thus the operator Ŝspin is capable of squeezing a large number of atoms if they are initially
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prepared in a coherent state. It is also noted that the oscillations in squeezing with time increases

with increase in the value of j.

In Chapter 5 we studied the spin squeezing dynamics when the Hamiltonian Ĥ ′
spin generates

time evolution on an atomic coherent state, that is the operator Ŝ ′
spin acts on an atomic coherent

state. The dynamics of a system of N two-level atoms interacting with the single mode of a cavity

having high quality factor and at thermal equilibrium is governed by the effective Hamiltonian

which has the same form as that of Ĥ ′
spin. We observed that there is no squeezing in the

y-quadrature however, x-quadrature shows significant amount of squeezing.
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7. Scope for Further Investigations

It has been stressed in the literature that spin squeezing is induced by entanglement [1]. We

know that entanglement forms the basis of the emerging field of quantum information. This is

definitely the driving factor in the continuing interest in the study of spin squeezing. The other

reasons for the progressive interest in spin squeezing are as follows:

(i) Spin entangled (spin squeezed) states after their measurements for extracting information,

for example, can be used again and again. This property of spins stands out when compared with

photonic systems. Entangled photons are destroyed for ever after their measurements. Thus an

ensemble of two level atoms (spins) can be used as an unit in quantum information processing.

(ii) We have shown in this thesis that spin squeezing is possible for number of spins N >

2. In other words multipartite entangled states in the spin systems are possible. Multipartite

entanglement is a subject of vigorous study in its identification and quantification.

(iii) The measure of quantum entanglement has so far been mathematical [2]. Spin squeezing

gives a physical (laboratory) measurement of quantum entanglement. Work has already began

in this direction, but, for a bipartite (two spin) system only [3]. We have also indicated work in

this direction [4]. It can be stated that a system with j = 1 (a bipartite system) is entangled if

S2
x |〈Ĵ〉| < 1 (7.1)

in the notations of parameters in Eq. (5.64) of Chapter 5. We know that a system is spin

squeezed, that is, Sx < 1 for dimensionless interaction time ∆0t = π/2 and the atomic excitation

parameter 0 < θ < π/2. The involved parameters ∆0 and θ have been defined in Chapter 5. In

this situation, we have shown

|〈Ĵ〉| =
√

1 − sin2 θ < 1. (7.2)

Thus the system evolving under the Hamiltonian Ĥeff = ∆0(Ĵ
2− Ĵ2

z ) in Eq. (5.84) of Chapter

5 is entangled.

We plan to extend the study for a multipartite system, that is, j > 1.

In Chapter 3, we identified two Hamiltonians nonlinear in spin operators, namely

Ĥspin =
1

2i
g1

(

Ĵ2
+ − Ĵ2

−

)

(7.3)

and

Ĥ ′
spin = g2Ĵ

2
z (7.4)
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which are capable of squeezing out noise from a spin system in a coherent state. We have shown

their characteristics in the subsequent Chapters 4 and 5. We discussed there various systems

whose Hamiltonians include the above nonlinear operators. In addition, the operator in Eq. (7.4)

appears in a system, the so called ‘driven Dicke model’ in quantum optics. The Dicke system [5]

consists of an ensemble of mutually non-interacting two level atoms confined to a cube of volume

λ3, where λ is the wavelength of the radiation field with which the atoms are interacting. The

laser cooling technology can be used to cool down a system of atoms sufficiently to get a Dicke

system. When this system is driven by an external laser, we get the system known as ‘driven

Dicke system’. Such a system in a cavity can be described by a model Hamiltonian [6] in which

one of the terms has the form in Eq. (7.4). This term arises due to atom-atom cooperation

through the common radiation field they are interacting. We plan to study this system to analyze

its squeezing capabilities. In addition to this, we also plan to study various systems discussed in

Chapters 4 and 5.
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A. Apendix-I

A.1. Baker Hausdorff Lemma

A.1.1. Theorem 1

Let Â and B̂ are two non-commutating operators and λ be a complex parameter. Then

eλÂ B̂ e−λÂ = B̂ + λ
[

Â, B̂
]

+
λ2

2!

[

Â,
[

Â, B̂
]]

+
λ3

3!

[

Â,
[

Â,
[

Â, B̂
]]]

+ .... (A.1)

To prove this theorem we follow the method outlined in Ref. [1].

Proof

To prove the above theorem we let

f̂(λ) = eλÂ B̂ e−λÂ. (A.2)

Therefore,

f̂(0) = B̂. (A.3)

Expanding f̂(λ) in Maclaurin’s series we obtain,

f̂(λ) = f̂(0) + λ
df̂

dλ

∣

∣

∣

∣

∣

λ=0

+
λ2

2!

d2f̂

dλ2

∣

∣

∣

∣

∣

λ=0

+ .... (A.4)

From Eq. (A.2) we see that

df̂

dλ
= ÂeλÂ B̂ e−λÂ − eλÂ B̂ e−λÂÂ

=
[

Â, f̂(λ)
]

. (A.5)

Hence,

df̂

dλ

∣

∣

∣

∣

∣

λ=0

=
[

Â, B̂
]

. (A.6)
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Now,

d2f̂

dλ2
= Â2eλÂ B̂ e−λÂ − ÂeλÂ B̂ e−λÂÂ− ÂeλÂ B̂ e−λÂÂ + eλÂ B̂ e−λÂÂ2

=
[

Â,
[

Â, f̂(λ)
]]

. (A.7)

Therefore,

d2f̂

dλ2

∣

∣

∣

∣

∣

λ=0

=
[

Â,
[

Â, B̂
]]

. (A.8)

Using Eqs. (A.3), (A.6) and (A.8) in Eq. (A.4) we obtain Eq. (A.1).

A.1.2. Theorem 2

If Â and B̂ are two non commutating operators that satisfy

[

Â,
[

Â, B̂
]]

=
[

B̂,
[

Â, B̂
]]

= 0, (A.9)

then

eÂ+B̂ = eÂ eB̂ e−
1

2
[Â,B̂] = eB̂ eÂ e

1

2
[Â,B̂]. (A.10)

This is a special case of the Baker-Hausdorff theorem.

Proof

Let ĝ(λ) be a operator function given as,

ĝ(λ) = eλÂeλB̂, (A.11)

where λ is a complex parameter. Differentiating with respect to λ we obtain

dĝ

dλ
= Â eλÂ eλB̂ + eλÂ eλB̂ B̂

=
(

Â + eλÂ B̂ e−λÂ
)

ĝ(λ). (A.12)

The second term in the parentheses can be written using Eq. (A.1) and Eq. (A.9) as

eλÂ B̂ e−λÂ = B̂ + λ
[

Â, B̂
]

. (A.13)

Thus, Eq. (A.12) may be written as

dĝ

dλ
=
{

(Â+ B̂) + λ
[

Â, B̂
]}

ĝ(λ). (A.14)
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From Eq. (A.9) we see that the quantity Â + B̂ and
[

Â, B̂
]

commute with each other and

hence, we may treat these quantities as ordinary commuting variables and integrate Eq. (A.14)

subject to the condition

ĝ(0) = 1. (A.15)

The operator function which satisfies Eq. (A.14) subject to the condition of Eq. (A.15) is

ĝ(λ) = e(Â+B̂)λ+(λ2/2)[Â,B̂]. (A.16)

Since (Â+ B̂) commute with [Â, B̂], we can write the above equation as

ĝ(λ) = e(Â+B̂)λe(λ
2/2)[Â,B̂]. (A.17)

Equating the right hand side of Eq. (A.11) with that of Eq. (A.17) we obtain

eλÂeλB̂ = e(Â+B̂)λe(λ
2/2)[Â,B̂]. (A.18)

If we let λ = 1 and multiply both sides of the above equation from right by e−
1

2
[Â,B̂], then we

obtain the first part of Eq. (A.10). The proof of the second part of Eq. (A.10) is obtained by

assuming an operator function as

û(λ) = eλB̂eλÂ (A.19)

and proceeding in the same manner as above.
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B. Apendix-II

B.1. Atomic Coherent States in Schwinger Representation

Atomic coherent states are traditionally developed via

|j, χ〉 = NeχĴ−|j,m = j〉 (B.1)

= N

2j
∑

n=0

χn

n!
Ĵn
−|j,m = j〉. (B.2)

Now

Ĵn
−|j,m = j〉 =

√

(2j)!n!

(2j − n)!
|j, j − n〉. (B.3)

Thus

|j, χ〉 = N

2j
∑

n=0

√

2jCnχ
n|j, j − n〉. (B.4)

To find the normalization constant N we use the condition

〈j, χ|j, χ〉 = 1 (B.5)

and therefore, we obtain

〈j, χ|j, χ〉 = N2

2j
∑

n=0

2jCn(|χ|2)n

= N2(1 + |χ|2)2j
.

Accordingly the normalized state is

|j, χ〉 =
1

(1 + |χ|2)j

2j
∑

n=0

√

2jCnχ
n|j, j − n〉. (B.6)

We now represent the atomic coherent state using Schwinger construction for angular mo-

mentum operators [1]. Let us introduce two bosonic annihilation operators âi(i = +,−) such

that

[âi, â
†
j] = δij (B.7)
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and

[âi, âj] = 0 = [â†i , â
†
j ]. (B.8)

Out of these operators we construct

Ĵ+ = â†+â−, (B.9)

Ĵ− = â†−â+ (B.10)

and

Ĵz =
1

2
(â†+â+ − â†−â−). (B.11)

It can be noted that

[Ĵ+, Ĵ−] = 2Ĵz; (B.12)

[Ĵz, Ĵ±] = ±Ĵ±, (B.13)

so that these satisfy the same algebra as the angular momentum operators.

Now the angular momentum states |j,m〉 may be elegantly constructed out of these funda-

mental oscillator operators vide

|j,m〉 =
(â†+)

j+m
(â†−)

j−m

√

(j +m)!(j −m)!
|0+, 0−〉 (B.14)

as this satisfies

Ĵz|j,m〉 = m|j,m〉 (B.15)

Ĵ±|j,m〉 =
√

(j ∓m)(j ±m+ 1|j,m± 1〉. (B.16)

Here |0+, 0−〉 is the vacuum state defined as

â+|0+, 0−〉 = 0; â−|0+, 0−〉 = 0. (B.17)

It is as if a symmetric state is built out of 2j spin one-half quantities, (j +m) of them ‘up’ and

(j −m) of them ‘down’ giving

m =
1

2
(j +m) + (−1

2
)(j −m). (B.18)

(j +m)! and (j −m)! stands for the number of permutations giving the normalization. Now let

us take the atomic coherent state given in Eq. (B.6) and express it in terms of the Schwinger

construction.

|j, χ〉 =
1

(1 + |χ|2)j

2j
∑

n=0

√

2jCnχ
n (â†+)

2j−n
(â†−)

n

√

(2j − n)!n!
|0+, 0−〉 (B.19)

=
1

√

(2j)!

2j
∑

n=0

2jCn
χn

(1 + |χ|2)j (â†+)
2j−n

(â†−)
n|0+, 0−〉 (B.20)

=
1

√

(2j)!

(

χ
√

1 + |χ|2
â†− +

1
√

1 + |χ|2
â†+

)2j

|0+, 0−〉. (B.21)
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Putting

χ = tan(θ/2)eiφ, (B.22)

we obtain

|j, χ〉 = |j, θ, φ〉 = eiφj

(

cos θ
2
e−iφ/2â†+ + sin θ

2
eiφ/2â†−

)2j

√

(2j)!
|0+, 0−〉. (B.23)

Removing the overall phase factor eiφj we obtain

|j, χ〉 = |j, θ, φ〉 =

(

cos θ
2
e−iφ/2â†+ + sin θ

2
eiφ/2â†−

)2j

√

(2j)!
|0+, 0−〉. (B.24)
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C. Apendix-III

C.1. A Pseudo-Hermitian Operator

An operator Â is said to be non-Hermitian if

Â 6= Â†, (C.1)

where Â† is the Hermitian adjoint of Â. A non-Hermitian operator, in general, possesses non real

eigenvalues. However, a class of non-Hermitian operators exist which possess only real eigenvalue

spectrum. The necessary condition for an operator to have real eigenvalue spectrum is that it

should be pseudo-Hermitian [1]. An operator Â is said to be pseudo-Hermitian if there exists a

Hermitian, linear and invertible operator η̂ such that

η̂Âη̂−1 = Â†. (C.2)

The operator Â is then said to be η-pseudo-Hermitian. An operator L̂ is said to be linear if for

any two vectors |ψ1〉 and |ψ2〉 and any two complex numbers c1 and c2 we have

L̂
[

c1|ψ1〉 + c2|ψ2〉
]

= c1L̂|ψ1〉 + c2L̂|ψ2〉. (C.3)

It is invertible if there exists L̂−1. The eigenvalues of a pseudo-Hermitian operator are either real

or in the form of complex conjugate pairs.

The necessary and sufficient condition for an operator admitting a complete set of discrete

biorthonormal eigenvectors to have only real eigenvalues is that the operator must be Ô†Ô-

pseudo-Hermitian, where Ô is a linear and invertible operator [2].

The existence of a complete set of discrete biorthonormal eigenvectors for an operator Â means

that there exists a set of vectors {|ψn〉, |φn〉} such that

Â|ψn〉 = En|ψn〉 (C.4)

and

Â†|φn〉 = E⋆
n|φn〉. (C.5)
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and

〈φm|ψn〉 = δmn, (C.6)
∑

n

|ψn〉〈φn| =
∑

n

|φn〉〈ψn| = 1, (C.7)

where, 1 in the equation above is the identity operator.

We now present the proof of the condition mentioned above.

Proof

Let there be an operator Â, which acts in a Hilbert space H. We assume that the spectrum of

Â is discrete and it admits a complete set of discrete biorthonormal eigenvectors {|ψn〉, |φn〉}.
Let the Hilbert space is spanned by a complete set of basis vectors {|n〉}. Therefore,

〈m|n〉 = δmn (C.8)

and
∑

n

|n〉〈n| = 1. (C.9)

We define two invertible and linear operators Ô1 and Ĥ0 in the Hilbert space H as

Ô1 =
∑

n

|ψn〉〈n| (C.10)

and

Ĥ0 =
∑

n

En|n〉〈n|. (C.11)

Then the inverse of Ô is given as

Ô−1
1 =

∑

n

|n〉〈φn|. (C.12)

Now,

Ô−1
1 Â Ô1 =

∑

n

|n〉〈φn|Â
∑

m

|ψm〉〈m|

=
∑

n,m

Em|n〉〈φn|ψm〉〈m|

=
∑

n

En|n〉〈n|

= Ĥ0. (C.13)
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Therefore,

Ô−1
1 Â Ô1 = Ĥ0, (C.14)

where we have used Eq. (C.6) in the third step. Now suppose that the spectrum of Â is real.

Then En are real implying that Ĥ0 is Hermitian. Now taking the adjoint of both sides of Eq.

(C.14) we obtain,

Ô†
1 Â

†
(

Ô−1
1

)†

= Ĥ†
0

= Ĥ0. (C.15)

Therefore,

Ô†
1 Â

†
(

Ô−1
1

)†

= Ô−1
1 Â Ô1. (C.16)

Operating by
(

Ô†
1

)−1

from left on both sides of the above equation we obtain

Â†
(

Ô−1
1

)†

=
(

Ô†
1

)−1

Ô−1
1 ÂÔ1. (C.17)

As
(

Ô−1
1

)†

=
(

Ô†
1

)−1

, (C.18)

therefore, Eq. (C.17) becomes

Â†
(

Ô†
1

)−1

=
(

Ô†
1

)−1

Ô−1
1 ÂÔ1. (C.19)

Operating by Ô†
1 from right on both sides of the above equation we obtain

Â† =
(

Ô†
1

)−1

Ô−1
1 Â Ô1Ô

†
1

=
(

Ô−1
1

)†

Ô−1
1 Â Ô1Ô1.

† (C.20)

Since Ô1 is invertible, we let

Ô−1
1 = Ô. (C.21)

Therefore, we can write Eq. (C.20) as

Â† = Ô†Ô Â Ô−1
(

Ô−1
)†

= Ô†ÔÂÔ−1
(

Ô†
)−1

= Ô†Ô Â
(

Ô†Ô
)−1

. (C.22)

Thus, the operator Â is Ô†Ô pseudo-Hermitian. This completes the proof.
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D. Apendix-IV

D.1. Reduced Wigner D-Matrix Elements

We present here the derivation of the reduced Wigner D-matrix elements using Schwinger’s

algebra for angular momentum [1]. We also discuss some properties of these matrix elements [2].

The angular momentum state can be represented using Schwinger algebra as [Apendix II],

|j,m〉 =
(â†+)

j+m
(â†−)

j−m

√

(j +m)!(j −m)!
|0+, 0−〉. (D.1)

We apply the rotaion operator

D̂(β) = exp(−i Ĵyβ

~
), (D.2)

on |j,m〉 and obtain

D̂(β)|j,m〉 = D̂(β)
(â†+)

j+m
(â†−)

j−m

√

(j +m)!(j −m)!
|0+, 0−〉. (D.3)

Inserting the identity operator

D̂(β)−1D̂(β) = 1̂ (D.4)

we obtain,

D̂(β)|j,m〉 =

[

D̂(β)â†+D̂
−1(β)

]j+m[

D̂(β)â†−D̂
−1(β)

]j−m

√

(j +m)!(j −m)!
D̂(β)|0+, 0−〉. (D.5)

Now

D̂(β)|0+, 0−〉 =

[

1 − i
Ĵyβ

~
−
Ĵ2

yβ
2

2!~2
+ ......

]

|0+, 0−〉. (D.6)

We know from Apendix-II that,

Ĵy =
~

2i

(

â†+â− − â†−â+

)

. (D.7)

As,

â+|0+, 0−〉 = 0 (D.8)
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and

â−|0+, 0−〉 = 0, (D.9)

therefore,

Ĵy|0+, 0−〉 =
1

2i

(

â†+â− − â†−â+

)

|0+, 0−〉

= 0. (D.10)

Using these results we can write Eq. (D.6) as

D̂(β)|0+, 0−〉 = |0+, 0−〉. (D.11)

Now,

D̂(β) â†± D̂−1(β) = exp(−i Ĵyβ

~
) â†± exp(i

Ĵyβ

~
). (D.12)

According to Baker-Hausdorff lemma, presented in Apendix-I, we can write

exp(−i Ĵyβ

~
) â†± exp(i

Ĵyβ

~
) = â†± + (−iβ)

[

Ĵy

~
, â†±

]

+
(−iβ)2

2!

[

Ĵy

~
,

[

Ĵy

~
, â†±

]]

+ ......

+ ......
(−iβ)n

n!

[

Ĵy

~
,

[

Ĵy

~
,

[

Ĵy

~
, ...

[

Ĵy

~
, â†±

]]]

...... (D.13)

Now

[

Ĵy

~
, â†+

]

= − 1

2i

[

â†−â+, â
†
+

]

= − 1

2i
â†− (D.14)

[

Ĵy

~
,

[

Ĵy

~
, â†+

]]

= −
[

Ĵy

~
,
â†−
2i

]

=
1

4
â†+ (D.15)

[

Ĵy

~
,

[

Ĵy

~
,

[

Ĵy

~
, â†+

]]]

=

[

Ĵy

~
,
â†+
4

]

= − 1

8i
â†− (D.16)

[

Ĵy

~
,

[

Ĵy

~
,

[

Ĵy

~
,

[

Ĵy

~
, â†+

]]]]

= −
[

Ĵy

~
,
â†−
8i

]

=
1

16
â†+ (D.17)
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and so on. Thus using these results we obtain from Eq. (D.13) as

D̂(β) â†+ D̂−1(β) = exp(−i Ĵyβ

~
) â†+ exp(i

Ĵyβ

~
)

= â†+ +
β

2
â†− − 1

2!

(

β

2

)2

â†+

− 1

3!

(

β

2

)3

â†− +
1

4!

(

β

2

)4

â†+ + ......

= â†+ cos

(

β

2

)

+ â†− sin

(

β

2

)

. (D.18)

Similarly,

D̂(β) â†− D̂−1(β) = â†− cos

(

β

2

)

− â†+ sin

(

β

2

)

. (D.19)

Substituting Eqs. (D.18), (D.19) and (D.11) into Eq. (D.5) we obtain

D̂(β)|j,m〉 =

(

â†+ cos β
2

+ â†− sin β
2

)j+m(

â†− cos β
2
− â†+ sin β

2

)j−m

√

(j +m)!(j −m)!
|0+, 0−〉. (D.20)

Recalling the binomial theorem

(

x+ y

)r

=
∑

k

r!xr−kyk

(r − k)!k!
(D.21)

we can write Eq. (D.20) as

D̂(β)|j,m〉 =
∑

k

∑

l

(j +m)!(j −m)!

(j +m− k)!k!(j −m− l)!l!

×

[

â†+ cos(β/2)
]j+m−k[

â†− sin(β/2)
]k

√

(j +m)!(j −m)!

×
[

− â†+ sin(β/2)

]j−m−l[

â†− cos(β/2)

]l

|0+, 0−〉. (D.22)

Now using the identity operator

j
∑

m′=−j

|j,m′〉〈j,m′| = 1̂ (D.23)
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we can write,

D̂(β)|j,m〉 =

j
∑

m′=−j

|j,m′〉〈j,m′|D̂(β)|j,m〉

=

j
∑

m†=−j

|j,m′〉dj
m′m(β)

=

j
∑

m′=−j

dj
m′m(β)

(â†+)
j+m′

(â†−)
j−m′

√

(j +m′)!(j −m′)!
|0+, 0−〉 (D.24)

where we have used Eq. (D.1) in the last step.

Now comparing Eqs. (D.22) and (D.24) we see that

∑

k

∑

l

(j +m)!(j −m)!

(j +m− k)!k!(j −m− l)!l!
×

[

â†+ cos(β/2)
]j+m−k[

â†− sin(β/2)
]k

√

(j +m)!(j −m)!

×
[

− â†+ sin(β/2)

]j−m−l[

â†− cos(β/2)

]l

=

j
∑

m′=−j

dj
m′m(β)

(â†+)
j+m′

(â†−)
j−m′

√

(j +m′)!(j −m′)!
. (D.25)

We can obtain an explicit form for dj
m′m(β) by equating the coefficient of (â†+)j+m′

(â†−)j−m′
from

both sides of the above equation. We first equate the coefficients of (â†+)j+m′
for a fixed m′ from

both sides. The power of â†+ on the left hand side of the above equation takes the value j +m′

when the existing power that is 2j − k − l is equal to j +m′, that is when we have,

j +m′ = 2j − k − l

or, l = j − k −m′. (D.26)

We can verify that when the above equation is satisfied the power of â†− on the left hand side of

Eq. (D.25) matches with that in the right hand side. For a fixed value of m′ Eq. (D.26) indicates

that the k-sum and the l-sum on the left hand side of Eq. (D.25) are not independent. To find

out the coefficient of (â†+)j+m′
(â†−)j−m′

from the left hand side of Eq. (D.25) we eliminate l in

the exponents of cos(β/2), sin(β/2) and (−1) with the help of Eq. (D.26) and obtain,

j +m− k + l = 2j − 2k +m−m′ (D.27)

k + j −m− l = 2k −m+m′ (D.28)

j −m− l = k −m+m′. (D.29)

Using these equations we can now write the coefficient of (â†+)j+m′
(â†−)j−m′

from the left hand

side of Eq. (D.25) as
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∑

k (−1)k−m+m′

√

(j +m)!(j −m)!

k!(j +m− k)!(j −m′ − k)!(m′ −m+ k)!

×
(

cos
β

2

)2j−2k+m−m′(

sin
β

2

)2k+m′−m

. (D.30)

The coefficient of (â†+)j+m′
(â†−)j−m′

on the right hand side of Eq. (20) is

dj
m′m(β)

1
√

(j +m′)!(j −m′)!
. (D.31)

Equating the two expressions given in (D.30) and (D.31) we can write

dj
m′m(β) = (−1)m′−m

√

(j +m)!(j −m)!(j +m′)!(j −m′)!

×
∑

k

(−1)k(cos β
2
)2j−2k−m′+m(sin β

2
)2k+m′−m

k!(j −m′ − k)!(j +m− k)!(m′ −m+ k)!
, (D.32)

where the sum over k is taken until none of the arguments of factorials in the denominator are

negative.

D.2. Symmetry Property

We can check that

dj
mm(−β) = dj

mm(β). (D.33)

D.3. Addition Theorem

The addition theorem for the dj
mm′(β) is

∑

m′

dj
mm′(β1)d

j
m′m′′(β2)e

−im′φ = e−imαdj
mm′′(β)e−im′′γ (D.34)

with α, β and γ given by

cotα = cosβ1 cotφ+ cot β2
sin β1

sin φ
, (D.35)

cosβ = cosβ1 cos β2 − sin β1 sin β2 cosφ, (D.36)

cot γ = cosβ2 cotφ+ cot β1
sin β2

sinφ
. (D.37)
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D.4. Second Derivative

To handle the second derivative of the Wigner reduced matrix occuring in the calculation of

the expectation value of Ĵ2
z in the squeezed state we use the differential equation satisfied by

Dj
mm′(α, β, γ) familiar from the quantum mechanics of an anisotropic rotor

[

− 1

sin β

∂

∂β
sin β

∂

∂β
+
m2 − 2mm′ cosβ +m′2

sin2 β

]

Dj
mm′(α, β, γ) = j(j + 1)Dj

mm′(α, β, γ).

(D.38)

Putting m′ = m and α = γ = 0 we obtain

d2

dβ2
dj

mm(β) = −j(j + 1)dj
mm(β) +m2 sec2(β/2) dj

mm(β) − cot β
d

dβ
dj

mm(β), (D.39)

wherein putting β = 2iξ and using the definition of ∆ as

∆ = dj
mm(2iξ), (D.40)

we obtain
d2∆

dξ2
= 4j(j + 1)∆ − 4

m2∆

cosh2ξ
+ 2 coth 2ξ

d∆

dξ
. (D.41)
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E. Apendix-V

E.1. Derivation of the Effective Hamiltonian for the Atom

Field Interaction in a Highly Detuned Cavity

We consider a system of N two-level atoms interacting collectively with a single mode electro-

magnetic field in a cavity [1]. Let ~ω0 be the energy gap between the two atomic energy levels

where ω0 is the angular frequency of a photon emitted or absorbed when the transition among

the two levels take place. The characteristic frequency of the electromagnetic field is ωc. If the

raising and lowering operators for the transition among the two atomic levels are Ĵ+ and Ĵ−

respectively with Ĵz as the inversion operator (already intrduced in Chapter-1) and â and â† are

the annihilation and creation operators respectively for the photon numbers in the Fock state of

the electromagnetic field then the atom-field interaction is governed by the Hamiltonian operator

Ĥ = ~ω0Ĵz + ~ωcâ
†â+ ~g(Ĵ+â + â†Ĵ−). (E.1)

Here g is the atom field coupling constant. The irreversible loss of the electromagnetic field due

to leakage out of the cavity is described by the operator

Λ̂f ρ̂ = κ(n̄ + 1)(2âρ̂â† − â†âρ̂− ρ̂â†â) + κn̄(2â†ρ̂â− ââ†ρ̂− ρ̂ââ†), (E.2)

where ρ̂ is the density operator for the whole system, 2κ represents the loss of the photons and n̄

is the average number of thermal photons in the cavity. The dynamics of the system in a frame

rotating with ω0 is described by the master equation

dρ̂

dt
= L̂af ρ̂+ L̂f ρ̂. (E.3)

The operators L̂af ρ̂ and L̂f ρ̂ are

L̂af ρ̂ = −ig
[

Ĵ+â+ â†−, ρ
]

(E.4)

and

L̂f ρ̂ = −iδc
[

â†â, ρ̂
]

+ Λ̂f ρ̂ (E.5)
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with

δc = ωc − ω0. (E.6)

We now concentrate on the atomic system and for that we derive an equation for the reduced

density matrix ρa for the atomic system. We write the formal solution of Eq. (E.3) as

ρ̂(t) = eL̂f tρ̂(0) +

∫ t

0

dt1e
[L̂f (t−t1)]L̂af ρ̂(0)

+

∫ t

0

dt1

∫ t1

0

dt2e
[L̂f (t−t1)]L̂afe

[L̂f (t1−t2)]L̂af ρ̂(t2). (E.7)

The operator L̂af determines the rate of exchange of energy between the atoms and field which

for large N is of the order of g
√
N . The rate of the process described by the operator L̂f is of

the order of |iδc + κ|. If |iδc + κ| >> g
√
N then the evolution of the field is dominated by L̂f

and we may assume that the field remains for all times adiabatically in the state determined by

L̂f . If the time scale of observation is much longer than |iδc + κ| then that state is the steady

state ρ̂ss
f of L̂f . This state is the steady state of thermal equilibrium and is given by

ρ̂ss
f = e−βâ†â/Tr

[

e−βâ†â
]

, (E.8)

where

e−β =
n̄

n̄ + 1
. (E.9)

We write the density operator ρ̂(t) in Eq. (E.7) as the outer product of the density matrix ρ̂a(t)

of the atomic system and steady state density matrix ρ̂ss
f for the field. After taking the trace of

the two sides of Eq. (E.7) over the electromagnetic field states we get

dρ̂a

dt
=

∫ t

0

dt1Trf

{

L̂afe
[L̂f (t−t1)]L̂af (t1)ρ̂a(t1)ρ̂

ss
f

}

. (E.10)

Here L̂af (t1) is the Liouville operator L̂af in the interaction picture. We evaluate the above

integral using the results

eL̂f tâρ̂ = eiδct
[

{(n̄+ 1)eκt − n̄e−κt}âρ̂

− n̄{eκt − e−κt}ρ̂â
]

(E.11)

and

eL̂f tρ̂â = eiδct
[

(n̄+ 1){eκt − e−κt}âρ̂

− {n̄eκt − (n̄+ 1)e−κt}ρ̂â
]

(E.12)
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along with their Hermitian conjugates and obtain

dρ̂a

dt
=

g2

κ2 + δ2
c

[

− iδc{[Ĵ+Ĵ−, ρ̂a] + 2n̄[Ĵz, ρ̂a]}

+ κ{(n̄ + 1)(2Ĵ−ρ̂aĴ+ − Ĵ+Ĵ−ρ̂a − ρ̂aĴ+Ĵ−)

+ n̄(2Ĵ+ρ̂aĴ− − Ĵ−Ĵ+ρ̂a − ρ̂aĴ−Ĵ+)}
]

. (E.13)

We also have assumed that the atomic density matrix ρ̂a(t) evolves slowly on the scale 1/ω0. If

δc >> κ then the contribution due to damping in Eq. (E.13) is very small and hence negligible

and therefore, the above equation reduces to

dρ̂a

dt
= −iη

[

Ĵ+Ĵ− + 2n̄Ĵz, ρ̂a

]

(E.14)

where,

η =
g2δc

κ2 + δ2
c

(E.15)

and Ng2 << κ2 + δ2
c . For a given value of

√
Ng and κ, the adiabatic condition can be satisfied

by increasing the detuning |ω0 −ωc|. Thus in a cavity, highly detuned from the atomic transition

frequency, the evolution of the atomic system is governed by the effective Hamiltonian

Ĥeff = ~η
[

Ĵ+Ĵ− + 2n̄Ĵz

]

. (E.16)
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